
(1÷15)^(1+2√5)×5^(2+2√5)÷3^(2−2√5)


Ответы на вопрос




To simplify the expression (1÷15)^(1+2√5)×5^(2+2√5)÷3^(2−2√5), we can break it down into individual terms and simplify each term separately.
Let's start with the first term, (1÷15)^(1+2√5):
(1÷15)^(1+2√5) = (1/15)^(1+2√5)
To simplify this term, we can rewrite 1/15 as a power of 15:
(1/15)^(1+2√5) = (15^(-1))^(1+2√5) = 15^(-(1+2√5))
Moving on to the second term, 5^(2+2√5):
We can rewrite 5 as a power of 3:
5^(2+2√5) = (3+2)^(2+2√5) = 3^(2+2√5) × 2^(2+2√5)
And for the third term, 3^(2−2√5):
Similarly, we can rewrite 3 as a power of 5:
3^(2−2√5) = (5−2)^(2−2√5) = 5^(2−2√5) × 2^(2−2√5)
Now let's substitute these simplified forms back into the original expression:
(1÷15)^(1+2√5)×5^(2+2√5)÷3^(2−2√5) = 15^(-(1+2√5)) × 3^(2+2√5) × 2^(2+2√5) ÷ (5^(2−2√5) × 2^(2−2√5))
Since we have common bases (2 and 15) in the numerator and denominator, we can simplify further:
= (15/2)^(-(1+2√5)) × 3^(2+2√5) ÷ 5^(2−2√5)
At this point, we have simplified the expression as much as possible without knowing the specific values of √5 and without using numerical approximations.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili