
6sin^2x+5sin(p/2-x)=0 [-5p; -7p/2]


Ответы на вопрос

6cos²x-5cosx-6=0
cosx=a
6a²-5a-6=0
D=25+144=169
a1=(5-13)/12=-2/3
cosx=-2/3
x=π-arccos2/3+2πn,n∈z
x=-4π+arccos2/3∈[-5π;-7π/2]
a2=(5+13)/12=3/2⇒cosx=1,5>1 нет решения



To solve the equation 6sin^2x + 5sin(p/2-x) = 0 over the interval [-5p, -7p/2], we can follow these steps:
Simplify the equation: 6sin^2x + 5sin(p/2-x) = 0
Rearrange the terms: 6sin^2x = -5sin(p/2-x)
Divide both sides by 6 to isolate sin^2x: sin^2x = -5sin(p/2-x)/6
Take the square root of both sides to solve for sin(x): sinx = ±√(-5sin(p/2-x)/6)
Since the interval is given as [-5p, -7p/2], we need to find the values of x that satisfy this interval.
Substitute the values of x within the given interval into the equation and solve for sin(x): For x = -5p: sin(-5p) = ±√(-5sin(p/2-(-5p))/6)
For x = -7p/2: sin(-7p/2) = ±√(-5sin(p/2-(-7p/2))/6)
Evaluate the expressions on both sides of the equation for the given values of x within the interval to find the solution.
Please note that the solution will depend on the specific value of p provided. If you have a specific value for p, please provide it, and I can assist you further.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili