
1)cosa*cos3a-sina*sin3a 2) sin2a*cosa+cos2a*sina 3) sin40*cos5+cos40*sin5 4)
(tg7П/15-tg2П/15)/1+tg7П/15*tg2П/15 5) sina=4/5;П<a<3П/2; cosa-?

Ответы на вопрос

2) sin2a*cosa+cos2a*sina = sin(2a+a)=sin3a
3) sin40*cos5+cos40*sin5 =sin(40+5)=sin45=√2/2
4) (tg7П/15-tg2П/15)/1+tg7П/15*tg2П/15=tg(7П/15-2П/15)=tg(п/3)=√3
5) sina=-4/5;П<a<3П/2; cosa-?
cosa на отрезке П<a<3П/2 отрицателен.
1-sin^2a=cos^2a=1-16/25=9/25
cosa=-3/5



Let's solve each of the given trigonometric expressions step by step:
- To simplify the expression
cosa*cos3a - sina*sin3a
, we can use the cosine and sine angle addition formulas:
scsscosa*cos3a - sina*sin3a = cos(a + 2a) - sin(a + 2a)
= cos(3a) - sin(3a)
The values of cos(3a)
and sin(3a)
can be found using the triple-angle formulas:
scsscos(3a) = 4*cos^3(a) - 3*cos(a)
sin(3a) = 3*sin(a) - 4*sin^3(a)
Substituting these values into the expression:
scsscos(3a) - sin(3a) = 4*cos^3(a) - 3*cos(a) - (3*sin(a) - 4*sin^3(a))
- The expression
sin2a*cosa + cos2a*sina
can be simplified using the double-angle formulas:
scsssin2a = 2*sin(a)*cos(a)
cos2a = cos^2(a) - sin^2(a) = cos^2(a) - (1 - cos^2(a)) = 2*cos^2(a) - 1
Substituting these values into the expression:
scsssin2a*cosa + cos2a*sina = 2*sin(a)*cos(a)*cos(a) + (2*cos^2(a) - 1)*sin(a)
For the expression
sin40*cos5 + cos40*sin5
, we can't simplify it further without knowing the specific values ofsin(40)
andcos(40)
. Please provide the actual values ofsin(40)
andcos(40)
if you have them.The expression
(tg(7π/15) - tg(2π/15)) / (1 + tg(7π/15)*tg(2π/15))
involves tangent functions. To simplify it, we can use the tangent subtraction formula:
scsstg(a - b) = (tg(a) - tg(b)) / (1 + tg(a)*tg(b))
Substituting a = 7π/15
and b = 2π/15
:
scsstg(7π/15 - 2π/15) = (tg(7π/15) - tg(2π/15)) / (1 + tg(7π/15)*tg(2π/15))
- Given
sin(a) = 4/5
andπ < a < (3π/2)
, we know thata
lies in the third quadrant where both sine and cosine are negative. Using the Pythagorean identitysin^2(a) + cos^2(a) = 1
, we can findcos(a)
:
scsscos^2(a) = 1 - sin^2(a) = 1 - (4/5)^2 = 1 - 16/25 = 9/25
cos(a) = sqrt(9/25) = 3/5 (taking the negative value since `a` is in the third quadrant)
Please note that the solution to the third expression requires the specific values of sin(40)
and cos(40)
to proceed further.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili