
-2x(x+1)(x-4)(x2-16)<_0


Ответы на вопрос

x(x+1)(x-4)(x-4)(x+4)≥0
x(x+1)(x-4)²(x+4)≥0
-∞___-___-4___+___-1___-___0__+__[4]__+__+∞
x∈[-4;-1]U[0;+∞).



To solve the inequality -2x(x + 1)(x - 4)(x^2 - 16) ≤ 0, we need to find the values of x that satisfy the inequality.
First, let's factor the expression completely:
-2x(x + 1)(x - 4)(x^2 - 16) = -2x(x + 1)(x - 4)(x - 4)(x + 4)
The expression is now factored into individual factors. To determine the sign of each factor, we can examine the intervals where each factor is positive or negative. We can create a sign chart to keep track of the signs:
markdownIntervals | -∞ | -4 | -1 | 4 | +∞
-------------------------------------------
x + 1 | - | - | - | + | +
x - 4 | - | - | - | - | +
x - 4 | - | - | - | - | +
x + 4 | - | - | - | + | +
Solution | - | -4 | -1 | 4 | +∞
To determine the sign of the expression -2x(x + 1)(x - 4)(x^2 - 16), we consider the signs of the individual factors. If there is an odd number of negative factors, the expression is negative. If there is an even number of negative factors, the expression is positive. From the sign chart, we can see that there are negative factors at x = -4, x = -1, and x = 4. Since there are three negative factors, the expression is negative in the intervals (-4, -1) and (4, +∞).
Therefore, the solution to the inequality is:
-4 < x < -1 or x > 4


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili