
Тело массой 3кг соскальзывает с высоты 2м по наклонной плоскости, расположенной под углом а=30° к
горизонту. Коэффициент трения м=0,1. Определить работу силы трения при движении тела по наклонной плоскости.

Ответы на вопрос

А = -Fтр*L
sina=h/L
L=h/sina
А=-Fтр*h/sina
Fтр=k*N N= m*g*cosa
Fтр=k*m*g*соsa
Атр=-k*m*g*h*cosa/sina=-0,1*3*10*0,86*2/0,5=-10,32Дж



S=h/sin30=4 м
А=1.5*4=-6



Problem Analysis
We are given the following information: - Mass of the body, m = 3 kg - Height, h = 2 m - Angle of the inclined plane, α = 30° - Coefficient of friction, μ = 0.1We need to determine the work done by the force of friction as the body moves along the inclined plane.
Solution
To solve this problem, we can follow these steps:1. Calculate the gravitational potential energy of the body at the initial height. 2. Calculate the final velocity of the body at the bottom of the inclined plane. 3. Calculate the work done by the force of friction.
Let's calculate each step in detail.
Step 1: Calculate the Gravitational Potential Energy
The gravitational potential energy (PE) of an object is given by the formula:PE = mgh
where m is the mass of the object, g is the acceleration due to gravity, and h is the height.
Using the given values, we can calculate the gravitational potential energy at the initial height:
PE = (3 kg) * (9.8 m/s^2) * (2 m)
Calculating this, we find:
PE = 58.8 J.
Step 2: Calculate the Final Velocity
To calculate the final velocity of the body at the bottom of the inclined plane, we can use the principle of conservation of mechanical energy. The initial potential energy is converted into kinetic energy at the bottom of the inclined plane.The formula for the final velocity (v) can be derived as follows:
PE = KE
where KE is the kinetic energy of the body.
The kinetic energy (KE) of an object is given by the formula:
KE = (1/2) * m * v^2
where m is the mass of the object and v is the velocity.
Using the given values, we can calculate the final velocity:
PE = KE
mgh = (1/2) * m * v^2
Simplifying the equation, we find:
v = sqrt(2gh)
Substituting the values, we have:
v = sqrt(2 * 9.8 m/s^2 * 2 m)
Calculating this, we find:
v ≈ 6.26 m/s.
Step 3: Calculate the Work Done by the Force of Friction
The work done by the force of friction can be calculated using the formula:Work = Force * Distance
The force of friction (F) can be calculated using the formula:
F = μ * m * g * cos(α)
where μ is the coefficient of friction, m is the mass of the body, g is the acceleration due to gravity, and α is the angle of the inclined plane.
The distance (d) can be calculated using the formula:
d = h / sin(α)
Using the given values, we can calculate the work done by the force of friction:
F = μ * m * g * cos(α)
d = h / sin(α)
Work = F * d
Substituting the values, we have:
F = (0.1) * (3 kg) * (9.8 m/s^2) * cos(30°)
d = (2 m) / sin(30°)
Work = F * d
Calculating this, we find:
Work ≈ 10.2 J.
Answer
The work done by the force of friction as the body moves along the inclined plane is approximately 10.2 J.References
Source '...' Source '...' Source '...'

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili