Вопрос задан 29.09.2018 в 00:14. Предмет Физика. Спрашивает Силантьева Дана.

Пылинка массой 1*10 в -11 степени имеет заряд равный 20 элементарных зарядов и находится в

равновесии между двумя параллельными пластинами с разностью потонциалов 153В.Найти растояние между пластинами.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Клименко Данил.
дано
N = 20
q =1.6*10^-19 Кл
m = 
1*10 в -11 Кг
g =10 м/с2
найти
расстояние между пластинами. = d

решение
Q =N*q
U = E*d
E = U/d
F = QU/d = N*q*U/d
Fт = mg
условие равновесия
F = Fт
N*q*U/d = mg
d = N*q*U/mg
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Distance Between the Plates

To find the distance between the parallel plates, we can use the formula for the electric potential difference between two plates:

V = Ed

Where: - V is the potential difference (given as 153 V) - E is the electric field between the plates - d is the distance between the plates (what we need to find)

We are given that the dust particle has a charge equal to 20 elementary charges and is in equilibrium between the plates. This means that the electric force on the dust particle is balanced by the gravitational force acting on it.

The electric force on the dust particle can be calculated using the formula:

F = qE

Where: - F is the electric force - q is the charge of the dust particle (given as 20 elementary charges) - E is the electric field between the plates

The gravitational force acting on the dust particle can be calculated using the formula:

F = mg

Where: - F is the gravitational force - m is the mass of the dust particle - g is the acceleration due to gravity (approximately 9.8 m/s^2)

Since the electric force and gravitational force are equal, we can equate the two equations:

qE = mg

Solving for E, we get:

E = mg/q

Now we can substitute this value of E into the equation for potential difference:

V = Ed

Rearranging the equation, we get:

d = V/E

Substituting the given values, we have:

d = 153 V / (mg/q)

We are given that the mass of the dust particle is 1 * 10^-11 kg and the elementary charge is 1.6 * 10^-19 C. Plugging in these values, we can calculate the distance between the plates.

Let's calculate it step by step:

1. Calculate the electric field E: - m = 1 * 10^-11 kg - g = 9.8 m/s^2 - q = 20 * (1.6 * 10^-19 C) - E = (m * g) / q

2. Calculate the distance d: - V = 153 V - d = V / E

Let's calculate the values using the given formula and the provided values:

1. Calculate the electric field E: - m = 1 * 10^-11 kg - g = 9.8 m/s^2 - q = 20 * (1.6 * 10^-19 C) - E = (m * g) / q - E = (1 * 10^-11 kg * 9.8 m/s^2) / (20 * (1.6 * 10^-19 C))

2. Calculate the distance d: - V = 153 V - d = V / E - d = 153 V / E

Let's calculate the values:

1. Calculate the electric field E: - E = (1 * 10^-11 kg * 9.8 m/s^2) / (20 * (1.6 * 10^-19 C)) - E ≈ 3.06 * 10^7 N/C

2. Calculate the distance d: - d = 153 V / E - d ≈ 5 * 10^-12 m

Therefore, the distance between the plates is approximately 5 * 10^-12 meters.

Please note that the calculations provided above are based on the given information and assumptions.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос