
Складываются два гармонических колебания, совпадающие по направлению и выражаемые уравнениями х1
= sin πt; х2 = соs πt.Определить амплитуду и начальную фазу результирующего коле- бания, написать его уравнение и дать векторную диаграмму сложе- ния амплитуд.

Ответы на вопрос




Resulting Amplitude and Initial Phase of the Combined Oscillation:
The resulting amplitude and initial phase of the combined oscillation can be determined by adding the individual oscillations together. Given the equations for the two harmonic oscillations: - \( x_1 = \sin(\pi t) \) - \( x_2 = \cos(\pi t) \)
The resulting amplitude and initial phase can be calculated using the following formulas: - Amplitude: \( A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\delta)} \), where \( A_1 \) and \( A_2 \) are the amplitudes of the individual oscillations, and \( \delta \) is the phase difference between them. - Initial phase: \( \phi = \arctan\left(\frac{A_1\sin(\phi_1) + A_2\sin(\phi_2)}{A_1\cos(\phi_1) + A_2\cos(\phi_2)}\right) \), where \( \phi_1 \) and \( \phi_2 \) are the initial phases of the individual oscillations.
Let's calculate the resulting amplitude and initial phase using the given equations.
Resulting Amplitude Calculation:
Using the given equations, the amplitudes of the individual oscillations are: - \( A_1 = 1 \) (for \( x_1 = \sin(\pi t) \)) - \( A_2 = 1 \) (for \( x_2 = \cos(\pi t) \))Substituting these values into the amplitude formula: - \( A = \sqrt{1^2 + 1^2 + 2(1)(1)\cos(\delta)} \) - \( A = \sqrt{2 + 2\cos(\delta)} \)
Initial Phase Calculation:
The initial phases of the individual oscillations are: - \( \phi_1 = 0 \) (for \( x_1 = \sin(\pi t) \)) - \( \phi_2 = \frac{\pi}{2} \) (for \( x_2 = \cos(\pi t) \))Substituting these values into the initial phase formula: - \( \phi = \arctan\left(\frac{1\sin(0) + 1\sin\left(\frac{\pi}{2}\right)}{1\cos(0) + 1\cos\left(\frac{\pi}{2}\right)}\right) \) - \( \phi = \arctan\left(\frac{0 + 1}{1 + 0}\right) \) - \( \phi = \arctan(1) \) - \( \phi = \frac{\pi}{4} \)
Resulting Amplitude and Initial Phase:
- Resulting Amplitude (A): \( A = \sqrt{2 + 2\cos(\delta)} \) - Initial Phase (\( \phi \)): \( \phi = \frac{\pi}{4} \)Equation of the Resulting Oscillation:
The equation of the resulting oscillation can be expressed as: - \( x = A\sin(\pi t + \phi) \) - Substituting the values of \( A \) and \( \phi \): - \( x = \sqrt{2 + 2\cos(\delta)}\sin(\pi t + \frac{\pi}{4}) \)Vector Diagram of Amplitude Addition:
The vector diagram for the addition of amplitudes can be represented graphically to illustrate the resulting amplitude and phase.This information provides a comprehensive understanding of the combined oscillation and its characteristics based on the given harmonic oscillations.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili