Вопрос задан 26.09.2023 в 21:41. Предмет Физика. Спрашивает Гаврилица Анна.

3.Сила тяжіння, що діє на тiло на поверхні Землі, дорівнює 28 Н. На відста двох земних радіусів від

центра Землi визначте: а) силу тяжіння, що діє на тіло, б) прискорення вільного падіння (на поверхні Землi g=10 M/c^ 2 ) .
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Петюренко Серёжа.

Ответ:

a) 7H;    б) 2,5 м/с²;

Объяснение:

3.Сила тяжести, действующая на тело на поверхности Земли, равна 28 Н. На расстоянии  двух земных радиусов от центра Земли определите: а) силу тяжести, действующую на тело, б) ускорение свободного падения (на поверхности Земли g=10 M/c² ) .

F₁ = 28 H

R₁ = R  - радиус Земли

g₁ = 10 м/с²

R₂ = 2R

------------------------

F₂ - ?    g₂ - ?

------------------------

Найдём сначала ускорение свободного падения на расстоянии R₂ от центра Земли.

Ускорение свободного падения  g вычисляется по формуле

g = \dfrac{G\cdit M}{r^2}

здесь

G - универсальная гравитационная постоянная,

М - масса Земли,

r - расстояние от центра Земли.

На поверхности Земли

g_1 = \dfrac{G\cdit M}{R_1^2} = \dfrac{G\cdit M}{R^2}

На расстоянии R₂ = 2R от центра Земли

g_2 = \dfrac{G\cdit M}{R_2^2} = \dfrac{G\cdit M}{4R^2}

Выразим g₂ от g₁

g_2 =  \dfrac{g_1}{4}

По условию g₁ = 10 м/с²

тогда

g₂ = 10 : 4 = 2,5 (м/с²)

Масса тела

m = F₁ : g₁ = 28 : 10 = 2.8 (кг)

Сила тяжести тела на расстоянии R₂ = 2R от центра Земли

F₂ = m · g₂  = 2.8 · 2.5 = 7 (H)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вирішення цієї задачі ми можемо використовувати закон всесвітнього тяжіння Ньютона. Закон гласить, що сила тяжіння (F) між двома тілами обернено пропорційна квадрату відстані між ними і пропорційна масі обох тіл. Формула для розрахунку сили тяжіння виглядає так:

F = G * (m1 * m2) / r^2,

де: F - сила тяжіння, G - гравітаційна константа (приблизно 6.67430 x 10^-11 N(m/kg)^2), m1 та m2 - маси тіл, які притягуються (в даному випадку маса Землі та маса тіла), r - відстань між центром Землі та тілом.

a) Спершу ми розрахуємо масу Землі. Звідси відомо, що сила тяжіння на тіло на поверхні Землі дорівнює 28 Н. За допомогою формули:

F = G * (m1 * m2) / r^2,

28 Н = G * (m1 * m2) / (r^2),

де r - радіус Землі. Земний радіус приблизно дорівнює 6371 км, або 6371000 метрів. Тепер ми можемо розв'язати це рівняння для маси Землі (m1):

28 Н = (6.67430 x 10^-11 N(m/kg)^2) * (m1 * m2) / (6371000 м)^2.

m1 * m2 = (28 Н * (6371000 м)^2) / (6.67430 x 10^-11 N(m/kg)^2),

m1 * m2 ≈ 5.972 x 10^24 кг.

Тепер ми знаємо масу Землі (m1).

b) Для визначення прискорення вільного падіння (g) на відстані двох земних радіусів від центра Землі, ми можемо використовувати ту саму формулу:

F = G * (m1 * m2) / r^2.

Проте, на цій відстані r буде два рази більший за радіус Землі (2 * 6371000 м). Тобто r = 12742000 м.

Тепер ми можемо знайти прискорення вільного падіння (g) за допомогою тієї ж формули:

F = G * (m1 * m2) / r^2,

28 Н = (6.67430 x 10^-11 N(m/kg)^2) * (m1 * m2) / (12742000 м)^2.

Тепер можемо вирішити це рівняння для g:

g = (28 Н * (12742000 м)^2) / ((6.67430 x 10^-11 N(m/kg)^2) * m1 * m2).

Підставляючи значення m1 * m2, яке ми знайшли в пункті (a), отримаємо значення прискорення вільного падіння на відстані двох земних радіусів від центра Землі.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос