Вопрос задан 12.04.2018 в 10:35. Предмет Физика. Спрашивает Гутцайт Александр.

Однородная верёвка подвешена за два конца на разных высотах . Углы, которые составляет верёвка с

вертикалью в точках закрепления, равны α=45° и β =60°. Найти отношение длины части верёвки, расположенной левее самой низшей точки верёв- ки, к длине части верёвки правее этой точки.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Золотова Ева.

Пусть верёвка составляет с вертикалью углы alpha1 и alpha2, натяжения верёвки в точках крепления T1 и T2, массы, пропорциональные длинам l1 и l2 есть m1 и m2. Можно показать, что в нижней точке веревка горизонтальна, и пусть натяжение в нижней точке T. По третьему закону Ньютона в точках крепления возникают силы реакции N1 и N2.

Разрежем мысленно верёвку в нижней точке и уберем крепление со стены. Для примера будем рассматривать первый кусок.

Для того, чтобы кусок веревки находился в равновесии, необходимо уравновесить силу тяжести m1 g, для этого её надо тянуть с силами N1 и T. Записываем условия равновесия в проекции на оси:
x: T = T1 sin(alpha1)
y: m1 g = T1 cos(alpha1)

Из первого уравнения T1 = T/sin(alpha1), поэтому m1 = T/g * ctg(alpha1)
Аналогично, m2 = T/g * ctg(alpha2).

Тогда m1/m2 = l1/l2 = ctg(alpha1)/ctg(alpha2)

Подставляем alpha1 = 45°, alpha2 = 60°, и получаем ответ.

Ответ. l1/l2 = √3


0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос