Вопрос задан 24.02.2019 в 06:47. Предмет Математика. Спрашивает Кулаков Андрей.

В городе 2 овощных склада. По ошибке на один из них завезли в 2,5 раз больше картофеля,чем на

другой. Чтобы уравнять количество картофеля на обоих складах пришлось с 1го склада перевести на 2й 250 тонн картофеля. Сколько тонн картофеля было завезено на каждый склад первоначально? Решите пожалуйста, срочно!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Τретьяков Артем.
Х- завезли на второй склад4х- на первый склад4х-630=х+6304х-х=630+6303х=1260х=1260/3х=420420т- завезли на второй склад4*420=1680т - на первый склад
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have two vegetable warehouses in a city. One of the warehouses received 2.5 times more potatoes than the other warehouse. To equalize the amount of potatoes in both warehouses, 250 tons of potatoes were transferred from the first warehouse to the second warehouse. We need to determine the initial amount of potatoes that was delivered to each warehouse.

Solution

Let's assume the initial amount of potatoes delivered to the first warehouse is x tons. Since the second warehouse received 2.5 times more potatoes, the initial amount of potatoes delivered to the second warehouse is 2.5x tons.

To equalize the amount of potatoes in both warehouses, 250 tons of potatoes were transferred from the first warehouse to the second warehouse. After the transfer, the first warehouse has x - 250 tons of potatoes, and the second warehouse has 2.5x + 250 tons of potatoes.

Since the total amount of potatoes remains the same, we can set up the following equation:

(x - 250) + (2.5x + 250) = x + 2.5x

Simplifying the equation:

x - 250 + 2.5x + 250 = 3.5x

Combining like terms:

3.5x = 3.5x

This equation shows that the value of x can be any number. Therefore, there are infinitely many possible initial amounts of potatoes that could have been delivered to each warehouse.

In conclusion, we cannot determine the exact initial amount of potatoes delivered to each warehouse without additional information.

Please let me know if there is anything else I can help#### Problem Analysis We have two vegetable warehouses in a city. One of the warehouses received 2.5 times more potatoes than the other warehouse. To equalize the amount of potatoes in both warehouses, 250 tons of potatoes were transferred from the first warehouse to the second warehouse. We need to determine the initial amount of potatoes delivered to each warehouse.

Solution

Let's assume the initial amount of potatoes delivered to the first warehouse is x tons. Since the second warehouse received 2.5 times more potatoes, the initial amount of potatoes delivered to the second warehouse is 2.5x tons.

To equalize the amount of potatoes, 250 tons were transferred from the first warehouse to the second warehouse. After the transfer, the first warehouse has x - 250 tons of potatoes, and the second warehouse has 2.5x + 250 tons of potatoes.

Since the total amount of potatoes remains the same, we can set up the following equation:

x + (2.5x + 250) = x - 250 + (2.5x + 250)

Simplifying the equation:

3.5x + 250 = 3.5x

Subtracting 3.5x from both sides:

250 = 0

The equation 250 = 0 is not true, which means there is no solution to this problem. The given information is contradictory, and it is not possible to determine the initial amount of potatoes delivered to each warehouse based on the given information.

Please double-check the information provided or provide additional details if available.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос