
Сумма двух чисел 432 первое больше второго на 18 найдите эти числа сумма двух чисел равна 96 а
разность равна 18 найдите эти числасумма двух чисел равна 87 а разность равна 19 найдите эти числапомогите пожалуйста решить!

Ответы на вопрос

Ответ:
Пошаговое объяснение:
1) Пусть второе число -х, тогда первое - (х+18) Составим уравнение:
х + х+ 18= 432
2х= 432- 18
2х= 414
х=207 -второе число
х+18=207+18=225 -первое число
2)
(96-18):2=39- первое число.
96-39=57 - второе число
Проверка: 57-39=18 Разность этих чисел
57+39=96 сумма этих чисел
3) (87-19):2=34 первое число
87-34=53 второе число
Проверка: 53-34=19 разность этих чисел
53+34=87 сумма этих чисел



Ответ:
Пошаговое объяснение:



Problem 1: Sum of two numbers is 432, with the first number being 18 greater than the second.
To solve this problem, let's assume the first number is represented by x and the second number is represented by y.
According to the given information, the sum of the two numbers is 432, and the first number is 18 greater than the second. We can express this information in the form of equations:
1. x + y = 432 (Equation 1) 2. x = y + 18 (Equation 2)
To find the values of x and y, we can substitute Equation 2 into Equation 1:
y + 18 + y = 432
Simplifying the equation:
2y + 18 = 432
Subtracting 18 from both sides:
2y = 414
Dividing both sides by 2:
y = 207
Now that we have the value of y, we can substitute it back into Equation 2 to find the value of x:
x = 207 + 18 = 225
Therefore, the two numbers are 225 and 207.
Problem 2: Sum of two numbers is 96, with the difference being 18.
Let's assume the first number is represented by x and the second number is represented by y.
According to the given information, the sum of the two numbers is 96, and the difference between them is 18. We can express this information in the form of equations:
1. x + y = 96 (Equation 1) 2. x - y = 18 (Equation 2)
To find the values of x and y, we can solve this system of equations.
Adding Equation 1 and Equation 2:
(x + y) + (x - y) = 96 + 18
Simplifying the equation:
2x = 114
Dividing both sides by 2:
x = 57
Now that we have the value of x, we can substitute it back into Equation 2 to find the value of y:
57 - y = 18
Subtracting 57 from both sides:
-y = -39
Multiplying both sides by -1:
y = 39
Therefore, the two numbers are 57 and 39.
Problem 3: Sum of two numbers is 87, with the difference being 19.
Let's assume the first number is represented by x and the second number is represented by y.
According to the given information, the sum of the two numbers is 87, and the difference between them is 19. We can express this information in the form of equations:
1. x + y = 87 (Equation 1) 2. x - y = 19 (Equation 2)
To find the values of x and y, we can solve this system of equations.
Adding Equation 1 and Equation 2:
(x + y) + (x - y) = 87 + 19
Simplifying the equation:
2x = 106
Dividing both sides by 2:
x = 53
Now that we have the value of x, we can substitute it back into Equation 2 to find the value of y:
53 - y = 19
Subtracting 53 from both sides:
-y = -34
Multiplying both sides by -1:
y = 34
Therefore, the two numbers are 53 and 34.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili