
Упростить выражение а/b^2-ab+b/a^2-ab*3ab/b-a


Ответы на вопрос

Ответ:
2+b/a^2*3ab/b-a (вроде так, но я не уверена)



Для упрощения данного выражения мы можем начать с раскрытия скобок и объединения подобных членов в числителе и знаменателе:
\[ \frac{a}{b^2 - ab + \frac{b}{a^2} - ab \cdot \frac{3ab}{b-a}} \]
Сначала выполним умножение внутри выражения \(ab \cdot \frac{3ab}{b-a}\):
\[ ab \cdot \frac{3ab}{b-a} = \frac{3a^2b^2}{b - a} \]
Подставляем это обратно в исходное выражение:
\[ \frac{a}{b^2 - ab + \frac{b}{a^2} - \frac{3a^2b^2}{b-a}} \]
Теперь можно объединить дроби с общим знаменателем. Для этого приведем все слагаемые к общему знаменателю:
\[ \frac{a}{b^2 - ab} + \frac{a(b-a)}{ab} + \frac{3a^2b^2}{a^2(b-a)} \]
Теперь можно складывать дроби, учитывая общий знаменатель:
\[ \frac{a}{b^2 - ab} + \frac{a(b-a)}{ab} + \frac{3a^2b^2}{a^2(b-a)} = \frac{a^2 + a(b-a) + 3ab}{ab(b-a)} \]
Далее раскроем скобки и упростим числитель:
\[ \frac{a^2 + ab - a^2 + 3ab}{ab(b-a)} = \frac{4ab}{ab(b-a)} \]
Здесь \(a^2\) и \(-a^2\) сокращаются, а \(ab\) сокращается в числителе и знаменателе, поэтому:
\[ \frac{4ab}{ab(b-a)} = \frac{4}{b-a} \]
Таким образом, после упрощения данного выражения мы получаем ответ: \(\frac{4}{b-a}\).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili