Вопрос задан 15.11.2023 в 17:48. Предмет Математика. Спрашивает Миро Ада.

Яким числом є квадратом простого числа, то скільки множників містить його розкладання на прості

числа? ДАЮ 15 БАЛЛОВ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хомяков Илья.

Пошаговое объяснение:

Квадрат простого числа є числом, яке отримується шляхом помноження простого числа на саме себе. Наприклад, квадрат числа 2 - це 2 * 2 = 4, а квадрат числа 3 - це 3 * 3 = 9.

Коли ми розкладаємо квадрат простого числа на прості множники, отримуємо лише один множник - саме просте число, яке було піднесене до квадрату.

Наприклад, якщо ми розкладаємо 4 на прості множники, отримуємо 2 * 2. Але якщо ми розкладаємо 9, отримуємо 3 * 3.

Таким чином, квадрат простого числа містить лише один множник у своєму розкладанні на прості числа.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Яким числом є квадратом простого числа, то воно можна представити у вигляді добутку простого числа само на себе. Нехай це число позначимо як n^2, де n - просте число.

Розкладання числа n^2 на прості множники можна записати як n^2 = p_1^α_1 * p_2^α_2 * ... * p_k^α_k, де p_1, p_2, ..., p_k - прості числа, α_1, α_2, ..., α_k - їх степені.

Оскільки n - просте число, то його розкладання на прості множники буде мати вигляд n = p_1^1 * p_2^1 * ... * p_k^1.

Тоді розкладання числа n^2 на прості множники буде мати вигляд n^2 = n * n = (p_1^1 * p_2^1 * ... * p_k^1) * (p_1^1 * p_2^1 * ... * p_k^1) = p_1^2 * p_2^2 * ... * p_k^2.

Таким чином, розкладання числа n^2 на прості множники буде мати стільки ж самих множників, що й розкладання числа n. Тобто, кількість множників у розкладанні числа n^2 на прості множники буде дорівнювати кількості множників у розкладанні числа n.

Отже, якщо число є квадратом простого числа, то його розкладання на прості множники буде містити стільки ж самих множників, що й розкладання простого числа.

Отриманий висновок можна використати для відповіді на задане запитання: кількість множників у розкладанні числа, яке є квадратом простого числа, дорівнює кількості множників у розкладанні цього простого числа.

Наприклад, якщо дано число 9, яке є квадратом простого числа 3, то його розкладання на прості множники буде мати 2 множника: 9 = 3^2.

Таким чином, кількість множників у розкладанні числа, яке є квадратом простого числа, буде дорівнювати 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос