Вопрос задан 07.11.2023 в 16:22. Предмет Математика. Спрашивает Добровольская Полина.

Работая один, насос может откачать 1512 л воды за 36 ч., а работая вместе с другим насосом — за 12

ч. За какое время может откачать это количество воды второй насос?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шихвинцева Снежана.

Ответ:

1)1512^36=42(л/ч) производительность 1-го

2)1512:12=126(л/ч)производительность 2-х

3)126-42=84(л/ч) производительность 2-го

4) 1512:84=18(ч)

Ответ: за 18 часов 2-й насос сможет откачать 1512 литров воды.

Пожалуйста можно оценку)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Pump Efficiency

To determine the time it takes for the second pump to pump the same amount of water, we need to calculate the efficiency of the pumps. The efficiency of a pump is defined as the ratio of the work output to the work input. In this case, the work output is the amount of water pumped, and the work input is the time taken to pump that amount of water.

Let's assume that the first pump has an efficiency of x and the second pump has an efficiency of y.

Calculation for the First Pump

Given that the first pump can pump 1512 liters of water in 36 hours, we can calculate its efficiency as follows:

Efficiency of the first pump = Amount of water pumped / Time taken to pump the water

Efficiency of the first pump = 1512 liters / 36 hours = 42 liters/hour

Calculation for the Second Pump

Given that the two pumps working together can pump 1512 liters of water in 12 hours, we can calculate the combined efficiency of the two pumps as follows:

Combined efficiency of the two pumps = Amount of water pumped / Time taken to pump the water

Combined efficiency of the two pumps = 1512 liters / 12 hours = 126 liters/hour

Since the second pump is working with the same amount of water, we can subtract the efficiency of the first pump from the combined efficiency to find the efficiency of the second pump:

Efficiency of the second pump = Combined efficiency - Efficiency of the first pump

Efficiency of the second pump = 126 liters/hour - 42 liters/hour = 84 liters/hour

Calculation for the Time Taken by the Second Pump

Now that we know the efficiency of the second pump, we can calculate the time it takes for the second pump to pump 1512 liters of water:

Time taken by the second pump = Amount of water pumped / Efficiency of the second pump

Time taken by the second pump = 1512 liters / 84 liters/hour = 18 hours

Therefore, the second pump can pump the same amount of water in 18 hours.

Note: The calculations above assume that the efficiency of the pumps remains constant throughout the pumping process and that there are no other factors affecting the pumping rate.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос