Вопрос задан 29.10.2023 в 00:41. Предмет Математика. Спрашивает Жигулин Александр.

Сколько различных четырёхзначных чисел, в которых каждая следующая цифра на 2 меньше предыдущей?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пинкас Настя.

Ответ:

4

Пошаговое объяснение:

9753

8642

7531

6420

Всего 4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того, чтобы ответить на этот вопрос, нужно рассмотреть все возможные варианты четырехзначных чисел, в которых каждая следующая цифра на 2 меньше предыдущей. Таких чисел не так много, их можно перечислить:

- 8642 - 7420 - 6200 - 5080 - 3860 - 2640 - 1420

Всего получается 7 таких чисел. Это можно объяснить тем, что первая цифра не может быть меньше 8 (иначе число не будет четырехзначным), а последняя не может быть больше 2 (иначе разность между соседними цифрами не будет равна 2). Кроме того, первая и последняя цифры должны быть четными, а вторая и третья - нечетными.

Если вы хотите узнать больше о комбинаторике и подобных задачах, вы можете посмотреть [этот сайт](https://pandia.ru/text/78/486/76218.php), где есть примеры решения задач на комбинаторику. Там же вы найдете ответы на другие интересные вопросы, например:

- Сколько существует четырехзначных чисел, в которых есть ровно две восьмерки, не стоящие рядом? - Сколько существует четырехзначных чисел, составленных из разных четных цифр?

Надеюсь, что мой ответ был полезен и понятен для вас.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос