
Найти наибольшее значение функции: y = (x+10)^2 (x+9) + 1 На промежутке {-12;-9}


Ответы на вопрос

Ответ:
1
Пошаговое объяснение:
y' = 2(x + 10)(x + 9) + (x + 10)² = 0
(x + 10)(2x + 18 + x + 10) = 0
(x + 10)(3x + 28) = 0
x = -10 или x = -28/3 = -9 1/3
y'(-12) = -11
y'(-28/3) = 23/27
y'(-10) = 1
y'(-9) = 1
наибольшее значение: 1



Для нахождения наибольшего значения функции на промежутке, нужно сначала найти производную функции и приравнять ее к нулю. Это даст нам критические точки, в которых функция может достигать экстремумов. Затем нужно проверить знак производной на интервалах между критическими точками, чтобы определить, возрастает или убывает функция на этих интервалах. Наконец, нужно сравнить значения функции в критических точках и на концах промежутка, чтобы найти наибольшее значение.
В данном случае, функция имеет вид: $$y = (x+10)^2 + (x+9) + 1$$ Ее производная равна: $$y' = 2(x+10) + 1$$ Приравнивая производную к нулю, получаем: $$2(x+10) + 1 = 0$$ Решая уравнение относительно x, находим: $$x = -10.5$$ Это единственная критическая точка функции. Проверим знак производной на интервалах $(-\infty, -10.5)$ и $(-10.5, +\infty)$:
- При $x < -10.5$, $y' < 0$, то есть функция убывает. - При $x > -10.5$, $y' > 0$, то есть функция возрастает.
Следовательно, в точке $x = -10.5$ функция достигает своего минимального значения. Но нам нужно найти наибольшее значение функции на промежутке ${-12; -9}$. Для этого сравним значения функции в точке $x = -10.5$ и на концах промежутка:
- При $x = -12$, $y = (-12+10)^2 + (-12+9) + 1 = 4$. - При $x = -10.5$, $y = (-10.5+10)^2 + (-10.5+9) + 1 = 0.25$. - При $x = -9$, $y = (-9+10)^2 + (-9+9) + 1 = 2$.
Из сравнения видно, что наибольшее значение функции на промежутке ${-12; -9}$ равно 4 и достигается при x = -12.
Вы можете посмотреть график функции и ее производной [здесь](https://allcalc.ru/node/1816). Также вы можете использовать онлайн калькулятор для нахождения наибольшего значения функции [здесь](https://www.mathway.com/ru/Algebra).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili