
в 11 часов с аэродрома вылетели одновременно в противоположных направлениях два самолёта в 14 часов
расстояние между ними было 3540 км. один из них летел со скоростью 620 км в час с какой скоростью летел другой самолёт

Ответы на вопрос

2)620*3=1860(км)- расстояние которое пролетел первый самолет.
3)3540-1860=1680(км)- расстояние которое пролетел второй самолет.
4)1680:3=560(км/ч)-средняя скорость второго самолета.
Ответ: 560 км/ч средняя скорость второго самолета.



Problem Analysis
We have two airplanes that took off simultaneously from an airport in opposite directions. At 14:00, the distance between them was 3540 km. We know that one of the airplanes was flying at a speed of 620 km/h. We need to determine the speed of the other airplane.Solution
Let's assume that the speed of the second airplane is x km/h.We can use the formula: distance = speed × time to calculate the time it took for the airplanes to reach the distance of 3540 km.
For the first airplane: - Speed = 620 km/h - Time = 14:00 - 11:00 = 3 hours
Using the formula, we can calculate the distance covered by the first airplane: distance = speed × time distance = 620 km/h × 3 hours = 1860 km
Since the two airplanes are moving in opposite directions, the total distance covered by both airplanes is equal to the distance between them: distance covered by first airplane + distance covered by second airplane = total distance 1860 km + distance covered by second airplane = 3540 km
To find the speed of the second airplane, we need to calculate the time it took for the second airplane to cover the remaining distance (3540 km - 1860 km = 1680 km).
Using the formula distance = speed × time, we can rearrange it to solve for time: time = distance / speed
For the second airplane: - Distance = 1680 km - Speed = x km/h
Substituting the values into the formula, we get: time = 1680 km / x km/h
Since both airplanes took off at the same time, the total time taken by both airplanes is 3 hours.
Therefore, we can set up the equation: 3 hours = 3 hours + time taken by the second airplane
Simplifying the equation: 3 hours = 3 hours + (1680 km / x km/h)
To find the speed of the second airplane, we need to solve this equation for x.
Calculation
Let's solve the equation to find the speed of the second airplane.3 hours = 3 hours + (1680 km / x km/h)
Subtracting 3 hours from both sides of the equation: 0 = (1680 km / x km/h)
Multiplying both sides of the equation by x: 0 = 1680 km
Since the equation simplifies to 0 = 1680 km, it means that there is no solution for the speed of the second airplane. This implies that the information provided is inconsistent or incorrect.
Conclusion
Based on the information provided, it is not possible to determine the speed of the second airplane. The given data does not allow for a valid calculation.

Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili