Вопрос задан 24.10.2023 в 09:30. Предмет Математика. Спрашивает Казиханова Ольга.

Дана последовательность натуральных чисел 3 5 7 9 11... Определи закономерность и Найдите число

стоящее на 2019 месте​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фомина Настя.

Ответ:

Дана арифметическая прогрессия 3, 5, 7, 9

Найдем n  = 5 - 3 = 2

a2019 =a1 + 2 * (2019 - 1 )

a2019 = 3 + 2 * 2018

a2019 = 4039

Число стоящее на 2019 месте​ = 4039

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

В данной последовательности натуральных чисел можно заметить, что каждое следующее число больше предыдущего на 2. Это арифметическая прогрессия с первым членом (a_1) равным 3 и разностью (d) равной 2.

Чтобы найти число на 2019 месте в этой последовательности, можно использовать формулу арифметической прогрессии:

a_n = a_1 + (n - 1) * d

где a_n - это n-ное число в последовательности, a_1 - первый член, n - номер числа, и d - разность между числами.

В данном случае: a_1 = 3 d = 2 n = 2019

Теперь подставим значения в формулу:

a_2019 = 3 + (2019 - 1) * 2 a_2019 = 3 + 2018 * 2 a_2019 = 3 + 4036 a_2019 = 4039

Таким образом, число, стоящее на 2019 месте в данной последовательности, равно 4039.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос