
Y'² −1=2yy"; y(2) = 1, y'(2) = 2


Ответы на вопрос

Пусть тогда
Подставим начальные условия: при y=1 y'=2 или
и знак выбирается +
Подставим начальные условия при x=2 y=1 или



The given equation is a second-order nonlinear differential equation in terms of y. To solve this equation, you can use the method of power series or expand the solution as a Taylor series. Here's how you can approach it:
Let's represent the solution y(x) as a Taylor series:
y(x) = ∑[n=0 to ∞] a_n (x - 2)^n
To find the solution, we need to calculate the derivatives of y with respect to x:
y'(x) = ∑[n=0 to ∞] a_n * n * (x - 2)^(n-1) y''(x) = ∑[n=0 to ∞] a_n * n * (n - 1) * (x - 2)^(n-2)
Now, we can substitute these derivatives into the given differential equation:
(y'(x))^2 - 1 = 2 * y(x) * y''(x)
(∑[n=0 to ∞] a_n * n * (x - 2)^(n-1))^2 - 1 = 2 * y(x) * (∑[n=0 to ∞] a_n * n * (n - 1) * (x - 2)^(n-2))
Now, let's calculate these series terms one by one. First, calculate the square of y'(x):
(∑[n=0 to ∞] a_n * n * (x - 2)^(n-1))^2 = ∑[n=0 to ∞] ∑[m=0 to ∞] (a_n * n * (x - 2)^(n-1)) * (a_m * m * (x - 2)^(m-1))
Now, let's focus on the right side of the equation. You'll need to calculate the product of y(x) and y''(x) as a series:
2 * y(x) * (∑[n=0 to ∞] a_n * n * (n - 1) * (x - 2)^(n-2))
Now, you can equate the coefficients of corresponding powers of (x - 2) on both sides of the equation. This will give you a set of equations for the coefficients a_n. Start with the lowest power and work your way up.
Here's what the equation for the lowest power (n = 0) looks like:
a_0^2 - 1 = 0
Solve for a_0:
a_0^2 = 1 a_0 = ±1
Now, let's find the equation for the next term (n = 1):
2 * a_0 * a_1 - 2 * a_0 * 0 * 1 = 0
a_1 = 0
Proceed with the rest of the terms, calculating the coefficients a_n one by one, and use the initial conditions y(2) = 1 and y'(2) = 2 to determine their values.
The final result will be a power series that represents the solution y(x) to the given differential equation.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili