
((sin a - cos a)^2 - 1)/(tg a - sin a • cos a) = -2ctg^2 a


Ответы на вопрос





To prove the identity:
((sin a - cos a)^2 - 1)/(tan a - sin a * cos a) = -2 * cot^2 a
We'll start by working with the left side of the equation and simplifying it step by step:
((sin a - cos a)^2 - 1)/(tan a - sin a * cos a)
First, expand the numerator:
(sin^2 a - 2 * sin a * cos a + cos^2 a - 1)/(tan a - sin a * cos a)
Now, since sin^2 a + cos^2 a = 1 (a trigonometric identity), we can simplify the numerator:
(1 - 2 * sin a * cos a - 1)/(tan a - sin a * cos a)
The "1" and "-1" in the numerator cancel out:
(-2 * sin a * cos a)/(tan a - sin a * cos a)
Next, let's simplify the denominator by expressing tan a as sin a / cos a:
(-2 * sin a * cos a)/((sin a / cos a) - sin a * cos a)
Now, find a common denominator for the terms in the denominator:
(-2 * sin a * cos a * cos a)/((sin a - sin a * cos^2 a))
Now, factor out sin a from the denominator:
(-2 * sin a * cos a * cos a)/(sin a(1 - cos^2 a))
Use the trigonometric identity sin^2 a + cos^2 a = 1 to simplify the denominator further:
(-2 * sin a * cos a * cos a)/(sin a * sin^2 a)
Now, you can cancel out the sin a from the numerator and denominator:
(-2 * cos a * cos a)/(sin a)
Finally, use the identity cos^2 a = 1 - sin^2 a:
(-2 * (1 - sin^2 a))/(sin a)
Now, distribute the -2 to both terms:
(2sin^2 a - 2)/(sin a)
Now, simplify further:
2sin^2 a/sin a - 2/sin a
The sin a in the numerator cancels with one of the sin a terms in the denominator, leaving:
2sin a - 2/sin a
Now, express 2/sin a as 2 * csc a (cosecant):
2sin a - 2csc a
So, the left side of the equation simplifies to:
2sin a - 2csc a
Now, let's work with the right side of the equation, which is -2 * cot^2 a:
-2 * cot^2 a
Since cot a is the reciprocal of tan a, cot a = 1/tan a. So, cot^2 a = (1/tan a)^2 = 1/(tan^2 a).
Now, express tan a as sin a / cos a:
cot^2 a = 1/((sin a / cos a)^2) = 1/(sin^2 a / cos^2 a) = cos^2 a / sin^2 a
Now, the right side of the equation becomes:
-2 * cos^2 a / sin^2 a
So, we have the left side as 2sin a - 2csc a and the right side as -2cos^2 a / sin^2 a. We can see that these two expressions are not equivalent, so the initial identity is not valid.
The identity you provided, ((sin a - cos a)^2 - 1)/(tan a - sin a * cos a) = -2 * cot^2 a, is not true.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili