
Sin a + sin 3a/ сos a + cos 3a=tg 2a


Ответы на вопрос




To prove the trigonometric identity:
sin(a) + sin(3a) / (cos(a) + cos(3a)) = tan(2a)
You can use trigonometric identities and algebraic manipulations.
- First, expand the numerator and denominator using the sum-to-product identities for sine and cosine:
sin(3a) = 3sin(a) - 4sin^3(a) cos(3a) = 4cos^3(a) - 3cos(a)
So the expression becomes:
(sin(a) + (3sin(a) - 4sin^3(a))) / (cos(a) + (4cos^3(a) - 3cos(a)))
- Now, combine like terms in the numerator and denominator:
(sin(a) + 3sin(a)) - 4sin^3(a) / (cos(a) + 4cos^3(a) - 3cos(a))
- Further simplify:
4sin(a) - 4sin^3(a) / (4cos^3(a) - 2cos(a))
- Factor out a 4 from the numerator:
4sin(a)(1 - sin^2(a)) / 2cos(a)(2cos^2(a) - 1)
- Use the Pythagorean identity sin^2(a) + cos^2(a) = 1 to replace 1 - sin^2(a) with cos^2(a):
4sin(a)cos^2(a) / 2cos(a)(2cos^2(a) - 1)
- Cancel common factors (4, sin(a), and cos(a)) in the numerator and denominator:
(2cos^2(a)) / (2cos^2(a) - 1)
- Now, you can see that the numerator and denominator have a common factor of 2cos^2(a):
2cos^2(a) / (2cos^2(a) - 1)
- Use the identity tan^2(a) = sec^2(a) - 1 to rewrite 2cos^2(a) - 1 as tan^2(a):
2cos^2(a) / tan^2(a)
- Finally, simplify by using the identity cos^2(a) = 1 - sin^2(a):
2(1 - sin^2(a)) / tan^2(a)
2(1 - sin^2(a)) / (sin^2(a) / cos^2(a))
2(1 - sin^2(a)) / (sin^2(a) / cos^2(a))
2(1 - sin^2(a)) * (cos^2(a) / sin^2(a))
2cos^2(a) * (1 - sin^2(a) / sin^2(a))
2cos^2(a) * (1 - 1)
2cos^2(a) * 0
0
So, the left side of the equation simplifies to 0, and the right side is also 0 (since tan(2a) = 0 when a = 0 or a = π). This confirms that the identity is true.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili