Вопрос задан 30.09.2023 в 16:43. Предмет Математика. Спрашивает Бачурин Илья.

ПОМОГИТЕ ПОЖАЛУЙСТА 1.Какие из предложенных уравнений являются равносильными?А)(х-2)(х +

2)=0Б)3х=15В)x +5=6Г)2(x-3)=4​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Барабан Никита.

Ответ:

б и г значение х равно 5 я так поняла

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения равносильности уравнений, давайте рассмотрим каждое из них по отдельности:

А) (х - 2)(х + 2) = 0

Б) 3х = 15

В) x + 5 = 6

Г) 2(x - 3) = 4

Для начала, давайте решим каждое из уравнений:

А) (х - 2)(х + 2) = 0

Для этого уравнения мы можем использовать свойство нулевого произведения: если произведение двух чисел равно нулю, то хотя бы одно из этих чисел должно быть равно нулю.

(x - 2)(x + 2) = 0

Таким образом, у нас есть два фактора:

  1. x - 2 = 0
  2. x + 2 = 0

Решим каждое из них:

  1. x - 2 = 0 x = 2

  2. x + 2 = 0 x = -2

Итак, решения уравнения А это x = 2 и x = -2.

Теперь давайте рассмотрим остальные уравнения:

Б) 3х = 15

Решение:

3х = 15 x = 15 / 3 x = 5

В) x + 5 = 6

Решение:

x + 5 = 6 x = 6 - 5 x = 1

Г) 2(x - 3) = 4

Решение:

2(x - 3) = 4 x - 3 = 4 / 2 x - 3 = 2 x = 2 + 3 x = 5

Итак, решения каждого уравнения:

А) x = 2 и x = -2 Б) x = 5 В) x = 1 Г) x = 5

Теперь мы можем сравнить уравнения, чтобы определить их равносильность:

Уравнение А имеет два различных корня: x = 2 и x = -2.

Уравнение Б имеет один корень: x = 5.

Уравнение В имеет один корень: x = 1.

Уравнение Г имеет один корень: x = 5.

Исходя из этого, уравнения В и Г равносильны, так как они оба имеют один и тот же корень x = 5. Уравнения А и Б не равносильны друг другу, так как у них разные корни.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос