
Две бригады, работая одновременно, могут отремонтировать дорогу за 6 ч. Если же сначала одна
бригада самостоятельно отремонтирует 3/5 дороги, а потом другая – оставшуюся часть дороги, то весь ремонт будет выполнен за 12 ч. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно?

Ответы на вопрос

Ответ:
12
Пошаговое объяснение:
Согласно условию за единицу принят объект работы - дорога.
x - производительность 1-й бригады.
y - производительность 2-й бригады.
1 -3/5=5/5 -3/5=2/5 - оставшаяся часть дороги.
Система уравнений:
6(x+y)=1 |×5
(3/5)/x +(2/5)/y=12; 3/(5x) +2/(5y)=12 |×1/6
30x+30y=5; 30y=5-30x; 30y=5(1-6x)
3/(30x) +2/(30y)=2
3/(30x) +2/(5-30x)=2
(15-90x+60x)/(150x(1-6x))=2
15-30x=300x(1-6x) |15
1-2x=20x-120x²
120x²-22x+1=0; D=484-480=4
x₁=(22-2)/240=20/240=1/12- производительность 1-й бригады.
6(1/12 +y)=1; 1/2 +6y=1; 6y=2/2-1/2; y=1/2 ·1/6; y₁=1/12 - производительность 2-й бригады.
Проверка:
3/5 ·1/12 +2/5 ·1/12=1/12 ·5/5=1/12 - производительность двух бригад.
1/(1/12)=1·12=12; 12=12 ч - время, затраченное на ремонт.
x₂=(22+2)/240=24/240=1/10 - производительность 1-й бригады.
6(1/10 +y)=1; 3/5 +6y=1; 6y=5/5 -3/5; y=2/5 ·1/6; y₂=1/15 - производительность 2-й бригады.
3/5 ·1/10 +2/5 ·1/15=3/50 +2/75=9/150 +4/150=13/150 - производительность двух бригад.
1/(13/150)=1·150/13=11 7/13; 11 7/13≠12
Отсюда следует:
1/12- производительность 1-й бригады.
1/12 - производительность 2-й бригады.
1/(1/12)=1·12/1=12 ч потребуется каждой бригаде отремонтировать дорогу.



Предположим, что первая бригада может отремонтировать дорогу за x часов самостоятельно, а вторая бригада может отремонтировать дорогу за y часов самостоятельно.
Из условия задачи мы знаем, что если обе бригады работают вместе, то они закончат ремонт за 6 часов. Запишем это как уравнение:
1/x + 1/y = 1/6 .......(уравнение 1)
Также из условия задачи мы знаем, что если первая бригада отремонтирует 3/5 дороги самостоятельно, то оставшуюся 2/5 дороги отремонтирует вторая бригада, и весь ремонт будет выполнен за 12 часов. Запишем это как уравнение:
1/x + 1/y = 5/12 .......(уравнение 2)
Теперь у нас есть система уравнений с двумя уравнениями (уравнение 1 и уравнение 2), которую нужно решить.
Решим систему уравнений:
1/x + 1/y = 1/6 1/x + 1/y = 5/12
Вычтем уравнение 1 из уравнения 2:
(1/x + 1/y) - (1/x + 1/y) = 5/12 - 1/6
Так как выражения в скобках сокращаются, получим:
0 = 5/12 - 1/6
Посчитаем правую часть:
5/12 - 1/6 = 5/12 - 2/12 = 3/12 = 1/4
Таким образом, мы получили уравнение:
0 = 1/4
Это уравнение не имеет решений, что значит, что система уравнений несовместна.
Так как система уравнений не имеет решений, в данной формулировке задачи не существует таких значений x и y, при которых обе бригады могут отремонтировать дорогу самостоятельно. Возможно, в условии была допущена ошибка, или задача нуждается в дополнительной информации для решения.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili