
Проиводные ylnx-xlny=0


Ответы на вопрос

Ответ:




To find the derivatives of the given expression yln(x) - xln(y) = 0 with respect to x and y, we can use implicit differentiation. Let's differentiate both sides of the equation with respect to x and y separately.
Given: yln(x) - xln(y) = 0
- Differentiating with respect to x: To differentiate yln(x) with respect to x, we use the product rule: (d/dx) [yln(x)] = y * (d/dx)[ln(x)] + ln(x) * (d/dx)[y] = y * (1/x) + ln(x) * dy/dx
To differentiate -xln(y) with respect to x, we use the product rule again: (d/dx)[-xln(y)] = -x * (d/dx)[ln(y)] + ln(y) * (d/dx)[(-x)] = -x * (1/y) + ln(y) * (-1)
Now, the derivative of 0 with respect to x is simply 0.
So, the complete differentiation with respect to x is: y * (1/x) + ln(x) * dy/dx - x/y - ln(y) = 0
- Differentiating with respect to y: To differentiate yln(x) with respect to y, we use the product rule: (d/dy)[yln(x)] = ln(x) * (d/dy)[y] + y * (d/dy)[ln(x)] = ln(x) + y * (1/x) * dx/dy
To differentiate -xln(y) with respect to y, we use the product rule again: (d/dy)[-xln(y)] = -ln(y) * (d/dy)[x] - x * (d/dy)[ln(y)] = -ln(y) * dx/dy - x * (1/y)
Now, the derivative of 0 with respect to y is also 0.
So, the complete differentiation with respect to y is: ln(x) + y * (1/x) * dx/dy - ln(y) * dx/dy - x/y = 0
Now, we have a system of two equations:
- y * (1/x) + ln(x) * dy/dx - x/y - ln(y) = 0
- ln(x) + y * (1/x) * dx/dy - ln(y) * dx/dy - x/y = 0
You can solve this system of equations to find the derivatives dy/dx and dx/dy in terms of x, y, ln(x), and ln(y). The exact solutions will depend on the values of x and y.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili