Вопрос задан 29.07.2023 в 07:28.
Предмет Математика.
Спрашивает Горлаченко Амалия.
Sqrt(2)*sin(2x+pi/4)-sqrt(2)sinx=sin2x+1 на отрезке[3pi/2;3pi]
Ответы на вопрос
Отвечает Катеринюк Надя.
Решение дано на фото.

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the trigonometric equation on the interval , we'll first simplify the equation and then find the values of that satisfy it.
Step 1: Simplification Using trigonometric identities, we can simplify the equation:
Recall the angle sum formula for sine:
Now let's apply this formula to the first term, where and :
Since , we have:
Now, substitute this back into the original equation:
Cancel out the terms:
Step 2: Rearrange the equation To simplify further, subtract from both sides:
Step 3: Use double-angle formula Now, recall the double-angle formulas for sine and cosine:
Substitute these into the equation:
Step 4: Simplify and solve Rearrange the equation:
