Вопрос задан 27.07.2023 в 10:02. Предмет Математика. Спрашивает Фоефанов Александр.

Найти производную 3 порядка у=х*2^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Абрукова Таня.

у=х*2^2

1)4

2)0 т.к производная числа

3)0

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения производной третьего порядка функции у = х * 2^2 нужно последовательно найти производные первого, второго и третьего порядков.

Пусть у = х * 2^2

Шаг 1: Найти первую производную у'(x):

Для нахождения производной функции у = х * 2^2, применим правило дифференцирования произведения функций: (d/dx)[u(x)v(x)] = u'(x)v(x) + u(x)v'(x)

Здесь u(x) = х и v(x) = 2^2 = 4.

Тогда у'(x) = 1 * 4 + х * d/dx(4) = 4 + 0 = 4

Шаг 2: Найти вторую производную у''(x):

Теперь найдем вторую производную, для этого продифференцируем у'(x) = 4 по x:

(d/dx)[u'(x)] = (d/dx)[4] = 0

Таким образом, у''(x) = 0

Шаг 3: Найти третью производную у'''(x):

Найдем третью производную, продифференцировав у''(x) = 0 по x:

(d/dx)[u''(x)] = (d/dx)[0] = 0

Таким образом, у'''(x) = 0

Итак, производные функции у = х * 2^2 до третьего порядка равны: y'(x) = 4 y''(x) = 0 y'''(x) = 0

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос