
Найти sin a и cos a,если ctg =-8/15


Ответы на вопрос

Ответ:
Пошаговое объяснение:




To find the values of sin(a) and cos(a) when cotangent (ctg) is equal to -8/15, we can use the following trigonometric identities:
- cot(a) = 1 / tan(a)
- cot(a) = cos(a) / sin(a)
First, we can find the values of sin(a) and cos(a) using the given cot(a) = -8/15:
cot(a) = -8/15
Now, let's use the first identity to find the value of tan(a):
tan(a) = 1 / cot(a) = 1 / (-8/15) = -15/8
Next, we can use the second identity to find the values of sin(a) and cos(a):
cot(a) = cos(a) / sin(a)
Since we have tan(a) = -15/8, and tan(a) = sin(a) / cos(a), we can equate these:
-15/8 = sin(a) / cos(a)
Now, we can solve for sin(a) and cos(a). Let's assume sin(a) = k, then:
-15/8 = k / cos(a)
Now, solve for cos(a):
cos(a) = k / (-15/8) = -8k/15
Since sin(a)^2 + cos(a)^2 = 1, we can substitute the values of sin(a) and cos(a) into this equation:
k^2 + (-8k/15)^2 = 1
Solving for k:
k^2 + 64k^2/225 = 1
(225k^2 + 64k^2) / 225 = 1
289k^2 = 225
k^2 = 225 / 289
k^2 = 25 / 289
k = ±√(25/289)
k = ±5/17
Now, we have two possible solutions for sin(a):
- sin(a) = 5/17
- sin(a) = -5/17
Finally, we can find the corresponding values of cos(a) using cos(a) = -8k/15:
- cos(a) = -8 * (5/17) / 15 = -40/255 = -8/51
- cos(a) = -8 * (-5/17) / 15 = 40/255 = 8/51
So, the solutions for sin(a) and cos(a) when cot(a) = -8/15 are:
- sin(a) = 5/17, cos(a) = -8/51
- sin(a) = -5/17, cos(a) = 8/51


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili