Вопрос задан 23.07.2023 в 19:51. Предмет Математика. Спрашивает Самарская Ангелина.

При каких значениях 4-m=2/x-1 имеет положительные корни

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Новиков Дмитрий.

Ответ:


Пошаговое объяснение:

Х-1=2/(4-м)

Х=1+2/(4-м)

Х=(4-м+2)/(4-м)

Х=(2-м)/(4-м)>0

Решим методом интервалов

Найдем корни числителя и знаменателя

м=2; м=4

При х от - бесконечность до 2 и при х от 4 до + бесконечность неравенство >0 это решение Х принадлежит (-бесконечность ;2) объединить с (4; +бесконечность)


При х от 2 до 4 неравенство <0 это не решение.



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для уравнения 4 - m = 2/(x - 1) чтобы имелся положительный корень, необходимо, чтобы правая часть уравнения (2/(x - 1)) была положительной, и чтобы левая часть (4 - m) была меньше или равна этой положительной правой части.

  1. Правая часть (2/(x - 1)) должна быть положительной: Для этого знаменатель (x - 1) не должен равняться 0, и числитель (2) должен быть положительным. Это выполняется, когда x - 1 > 0 (x > 1) и 2 > 0.

  2. Левая часть (4 - m) должна быть меньше или равна правой части (2/(x - 1)): То есть, 4 - m ≤ 2/(x - 1).

Теперь объединим оба условия:

  1. x > 1
  2. 4 - m ≤ 2/(x - 1)

Можем рассмотреть различные значения m и определить, при каких из них уравнение имеет положительные корни.

Пожалуйста, уточните значение m, и я смогу найти значения x, при которых уравнение имеет положительные корни.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос