
Решите уравнение sin* x /cos* x +1 = 0 .


Ответы на вопрос

Ответ:
Пошаговое объяснение:
tgx = -1
X=-pi/4 + pin
Pi - число пи, просто значка не нашёл)



To solve the equation , we need to first manipulate the equation to isolate the trigonometric functions. Let's follow these steps:
Step 1: Start by subtracting 1 from both sides of the equation: .
Step 2: Now, recall the trigonometric identity . We can rewrite the equation in terms of tangent: .
Step 3: At this point, we can see that there is no real solution for since the square of a real number cannot be negative. Therefore, the equation has no real solutions. However, we can represent the solutions in terms of complex numbers.
Step 4: Let's find the complex solutions. We know that can be rewritten as , where is the imaginary unit ().
Step 5: To find the values of that satisfy , we take the arctangent (inverse tangent) of :
The arctangent of is a complex number, and it has multiple possible values because the tangent function is periodic. One possible value for is the principal value of the arctangent of , which is given by:
Similarly, for , we have:
Again, the arctangent of has multiple possible values, and the principal value is given by:
These are the complex solutions to the equation. Note that can take any integer value, and each value will give us a different solution for . Therefore, the equation has infinitely many complex solutions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili