
2cos^2(2х+пи/3)-sin^2(х+пи/6)=2


Ответы на вопрос

Ответ:
Пошаговое объяснение:
2cos²(2x + π/3) - sin²(x + π/6) = 2
2cos²(2x + π/3) - (1 - cos(2x + π/3))/2 = 2
4cos²(2x + π/3) - 1 + cos(2x + π/3) = 4
4cos²(2x + π/3) + cos(2x + π/3) - 5 = 0
Замена: t = cos(2x + π/3), |t| ≤ 1.
4t² + t - 5 = 0
D = 81
t₁ = (-1 - 9)/(2·4) = -5/4 - не удовлетворяет условию |t| ≤ 1
t₂ = (-1 + 9)/(2·4) = 1
cos(2x + π/3) = 1
2x + π/3 = 2πn, n ∈ Z
x = -π/6 + πn, n ∈ Z



To solve the trigonometric equation 2cos^2(2x+π/3) - sin^2(x+π/6) = 2, we'll use trigonometric identities and algebraic manipulation. Let's go step by step:
Step 1: Use the double angle formula for cosine. cos(2θ) = 2cos^2(θ) - 1
Step 2: Use the sum-to-product formula for sine. sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
Step 3: Apply the formulas in the equation and simplify. 2[2cos^2(x + π/3) - 1] - [sin(x)cos(π/6) + cos(x)sin(π/6)]^2 = 2
Step 4: Simplify further using the value of cos(π/6) and sin(π/6). cos(π/6) = √3/2 sin(π/6) = 1/2
Now, let's apply these values: 2[2cos^2(x + π/3) - 1] - [sin(x) * (√3/2) + cos(x) * (1/2)]^2 = 2
Step 5: Expand and simplify. 2[2cos^2(x + π/3) - 1] - [√3/2 * sin(x) + 1/2 * cos(x)]^2 = 2
Step 6: Expand the square term. 2[2cos^2(x + π/3) - 1] - [(√3/2)^2 * sin^2(x) + 2 * (√3/2) * (1/2) * sin(x)cos(x) + (1/2)^2 * cos^2(x)] = 2
Step 7: Simplify further using trigonometric identities. 2[2cos^2(x + π/3) - 1] - [(3/4) * sin^2(x) + (√3/2) * sin(x)cos(x) + (1/4) * cos^2(x)] = 2
Step 8: Distribute the 2 in the first term. 4cos^2(x + π/3) - 2 - (3/4) * sin^2(x) - (√3/2) * sin(x)cos(x) - (1/4) * cos^2(x) = 2
Step 9: Move all terms to one side of the equation. 4cos^2(x + π/3) - (3/4) * sin^2(x) - (√3/2) * sin(x)cos(x) - (1/4) * cos^2(x) = 4
Step 10: Combine the cosine and sine terms using the identity sin^2(θ) + cos^2(θ) = 1. 4cos^2(x + π/3) - (3/4) * (1 - cos^2(x)) - (√3/2) * sin(x)cos(x) - (1/4) * cos^2(x) = 4
Step 11: Expand the cosine terms. 4cos^2(x + π/3) - (3/4) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) - (1/4) * cos^2(x) = 4
Step 12: Combine the cos^2(x) terms and move constants to the other side. 4cos^2(x + π/3) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 4 + 3/4
Step 13: Factor out the common factor of cos^2(x). cos^2(x + π/3) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 4 + 3/4
Step 14: Now, apply the double angle formula for cosine (cos(2θ) = 2cos^2(θ) - 1) to the first term on the left side. 2cos^2(x + π/3) - 1 + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 4 + 3/4
Step 15: Combine the cos^2(x) terms. 2cos^2(x + π/3) + (3/4) * cos^2(x) - 1 - (√3/2) * sin(x)cos(x) = 4 + 3/4
Step 16: Move the constant term to the right side. 2cos^2(x + π/3) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 4 + 3/4 + 1
Step 17: Combine the constant terms on the right side. 2cos^2(x + π/3) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 4 + 4/4
Step 18: Simplify the right side. 2cos^2(x + π/3) + (3/4) * cos^2(x) - (√3/2) * sin(x)cos(x) = 5
Now, the equation is in a manageable form. Solving this equation may involve further trigonometric identities and techniques, but at this point, it's better suited for numerical methods or graphing calculators to find approximate solutions.


Похожие вопросы
Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili