
|2x-y-3|+(x+3y-6)^2=0


Ответы на вопрос





To solve the equation |2x - y - 3| + (x + 3y - 6)^2 = 0, we'll need to consider two cases since the sum of absolute value and a square can be zero only when both individual terms are zero.
Case 1: (2x - y - 3) = 0 Solving for this case: 2x - y - 3 = 0 2x - y = 3 y = 2x - 3
Case 2: -(2x - y - 3) = 0 Solving for this case: -(2x - y - 3) = 0 -2x + y + 3 = 0 y = 2x + 3
So, we have two possible solutions for 'y' in terms of 'x':
- y = 2x - 3
- y = 2x + 3
Please note that in both cases, the equation (x + 3y - 6)^2 = 0 gives us the same result, which is (x + 3y - 6) = 0. We can verify that this is true:
Substitute y = 2x - 3 into (x + 3y - 6) = 0: x + 3(2x - 3) - 6 = 0 x + 6x - 9 - 6 = 0 7x - 15 = 0 7x = 15 x = 15/7
Now, substitute y = 2x + 3 into (x + 3y - 6) = 0: x + 3(2x + 3) - 6 = 0 x + 6x + 9 - 6 = 0 7x + 3 = 0 7x = -3 x = -3/7
So, the solutions for 'x' are x = 15/7 and x = -3/7, respectively. Now, we can find the corresponding 'y' values using the equations we derived earlier.
For x = 15/7: y = 2(15/7) - 3 = 30/7 - 3 = (30 - 21)/7 = 9/7
For x = -3/7: y = 2(-3/7) + 3 = -6/7 + 21/7 = (21 - 6)/7 = 15/7
The solutions to the equation are (x = 15/7, y = 9/7) and (x = -3/7, y = 15/7).


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili