
Вопрос задан 17.07.2023 в 15:23.
Предмет Математика.
Спрашивает Васильев Алёша.
Привет всем, помогите пожалуйста, решите дифференциальное уравнение (y+5)y’=4x


Ответы на вопрос

Отвечает Иванова Лиза.
я написал решение на листочке ===>>




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Привет! Я рад помочь. Давайте решим дифференциальное уравнение.
У нас дано уравнение: (y + 5)y' = 4x.
Для начала преобразуем его к виду, удобному для решения. Разделим обе части уравнения на (y + 5):
y' = (4x) / (y + 5).
Теперь мы можем решить это уравнение, используя метод разделяющихся переменных. Разделим переменные:
(y + 5) dy = 4x dx.
Интегрируем обе части уравнения:
∫ (y + 5) dy = ∫ 4x dx.
Получим:
(y^2 / 2 + 5y) = 2x^2 + C,
где C - произвольная постоянная интегрирования.
Таким образом, решение дифференциального уравнения (y + 5)y' = 4x имеет вид:
y^2 / 2 + 5y = 2x^2 + C.
Надеюсь, это поможет! Если у вас есть еще вопросы, не стесняйтесь задавать.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili