Вопрос задан 16.07.2023 в 22:34. Предмет Математика. Спрашивает Гируцкий Мирослав.

Если сторону квадрата увеличить на 4,5см то площадь увеличиться в 2,25раз Найдите длину стороны

квадрата
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андрієшин Олег.

Ответ: длина стороны квадрата 9 см.

Пошаговое объяснение:

Пусть длина стороны квадрата - х.   ⇒

(x+4,5)²/x²=2,25

(x+4,5)²=2,25x²

x²+9x+20,25=2,25x²

1,25x²-9x-20,25=0  |×4

5x²-36x-81=0   D=2915     √D=54

x₁=9     x₂=-1,8 ∉.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть x - исходная длина стороны квадрата. Тогда, согласно условию задачи:

(x + 4.5)^2 = 2.25 * x^2

Раскроем скобки:

x^2 + 9x + 20.25 = 2.25 * x^2

Перенесем все члены в одну сторону:

2.25 * x^2 - x^2 - 9x - 20.25 = 0

Упростим выражение:

1.25 * x^2 - 9x - 20.25 = 0

Теперь можем решить квадратное уравнение. Для этого можно использовать формулу дискриминанта:

D = b^2 - 4ac

где a = 1.25, b = -9 и c = -20.25. Подставим значения:

D = (-9)^2 - 4 * 1.25 * (-20.25) D = 81 + 101.25 D = 182.25

Так как дискриминант положительный, у уравнения есть два различных корня:

x = (-b ± √D) / (2a)

x = (-(-9) ± √182.25) / (2 * 1.25)

x = (9 ± √182.25) / 2.5

Таким образом, получаем два значения для длины стороны квадрата:

x1 = (9 + √182.25) / 2.5 x2 = (9 - √182.25) / 2.5

Вычислим численные значения:

x1 ≈ 8.01 x2 ≈ 0.79

Итак, длина стороны квадрата составляет примерно 8.01 см или 0.79 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос