
Вопрос задан 16.07.2023 в 07:55.
Предмет Математика.
Спрашивает Смородин Денис.
Мистер Фокс написал на доске шестизначное число. Мистер Форд стёр каждую цифру, чей сосед справа —
нечётная цифра. Осталось число 5496. Затем Мистер Фокс ещё раз написал на доске своё шестизначное число. В этот раз Мист�р Форд стёр каждую цифру, чей сосед справа — чётная цифра. На доске осталось число 386. Какое число Мистер Фокс упорно писал на доске? Только ответ!

Ответы на вопрос

Отвечает Savchenko Ira.
Очевидно, что исходное число заканчивается на цифру 6 - справа от неё цифр нет, поэтому она присутствует в обоих случаях.
Во втором случае мы видим недостающие цифры 3 и 8, которые были стёрты в первом. В первом случае были стёрты цифры, которые стояли слева от нечётных. Значит исходное число 354896.
Проверим:
1) 354896 - вычёркиваем 3 и 8, остаётся 5496
2) 354896 - вычёркиваем 5, 4 и 9, остаётся 386



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Ответ: 753186


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili