
Вопрос задан 15.07.2023 в 17:48.
Предмет Математика.
Спрашивает Кулумшина Альбина.
ДАЮ 20 БАЛЛОВ! Помогите решить уравнение на тему логарифмыlog2(5x-4)=2


Ответы на вопрос

Отвечает Охлопков Андрей.
Ответ:
1,6.
Пошаговое объяснение:
log2 (5x-4) = 2
ОДЗ : 5х - 4 > 0, х > 0,8.
log2 (5x-4) = log2 4
5x-4 = 4
5x = 4+4
5x = 8
x = 8:5
x = 1,6
Ответ: 1,6.
Проверка:
log2 (5•1,6-4) = 2
log2 4 = 2
2 = 2 - верно.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Спасибо за вашу щедрость! Давайте решим уравнение с логарифмом:
log2(5x - 4) = 2
Чтобы избавиться от логарифма, мы можем применить обратную функцию - возведение в степень. В данном случае мы возводим основание логарифма (2) в степень, равную обоим сторонам уравнения:
2^(log2(5x - 4)) = 2^2
По свойству логарифма log_a(b^c) = c, где "a" - основание логарифма, "b" - число, а "c" - степень, получаем:
5x - 4 = 4
Теперь решим полученное уравнение относительно "x":
5x = 4 + 4
5x = 8
x = 8 / 5
x = 1.6
Таким образом, решением данного уравнения является x = 1.6.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili