
832. 1) ||x|- 3| = 0; 2)|5— |x|| = 0;3)||x| +3| = 0;4)|7 – |x|| = 0.


Ответы на вопрос

Нет корней



Let's solve each of the given equations one by one:
- ||x| - 3| = 0:
To solve this equation, we can split it into two cases based on the inner absolute value.
Case 1: |x - 3| = 0: In this case, the expression inside the absolute value becomes zero. So we have: x - 3 = 0 x = 3
Case 2: |-(x - 3)| = 0: In this case, the expression inside the absolute value becomes zero when we negate it. So we have: -(x - 3) = 0 -x + 3 = 0 x = 3
Therefore, the solution to the equation ||x| - 3| = 0 is x = 3.
- |5 - |x|| = 0:
Similar to the previous equation, we'll split this equation into two cases based on the inner absolute value.
Case 1: |x - 5| = 0: In this case, the expression inside the absolute value becomes zero. So we have: x - 5 = 0 x = 5
Case 2: |-(x - 5)| = 0: In this case, the expression inside the absolute value becomes zero when we negate it. So we have: -(x - 5) = 0 -x + 5 = 0 x = 5
Therefore, the solution to the equation |5 - |x|| = 0 is x = 5.
- ||x| + 3| = 0:
Once again, let's split the equation into two cases based on the inner absolute value.
Case 1: |x + 3| = 0: In this case, the expression inside the absolute value becomes zero. So we have: x + 3 = 0 x = -3
Case 2: |-(x + 3)| = 0: In this case, the expression inside the absolute value becomes zero when we negate it. So we have: -(x + 3) = 0 -x - 3 = 0 x = -3
Therefore, the solution to the equation ||x| + 3| = 0 is x = -3.
- |7 - |x|| = 0:
As before, we'll split this equation into two cases based on the inner absolute value.
Case 1: |x - 7| = 0: In this case, the expression inside the absolute value becomes zero. So we have: x - 7 = 0 x = 7
Case 2: |-(x - 7)| = 0: In this case, the expression inside the absolute value becomes zero when we negate it. So we have: -(x - 7) = 0 -x + 7 = 0 x = 7
Therefore, the solution to the equation |7 - |x|| = 0 is x = 7.
In summary:
- ||x| - 3| = 0 has a solution x = 3.
- |5 - |x|| = 0 has a solution x = 5.
- ||x| + 3| = 0 has a solution x = -3.
- |7 - |x|| = 0 has a solution x = 7.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili