Вопрос задан 14.07.2023 в 03:18. Предмет Математика. Спрашивает Смирнов Евгений.

|x-7|>0; |x-4|<3; |2+x|<3; |x+3|>2; |x-4|>3; |x+2|>5​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белова Саша.

|x-7|>0; х- любое, кроме х=7, т.к. в этом случае модуль равен нулю.

|x-4|<3; -3<х-4<3; 1<х<7

|2+x|<3; -3<х+2<3; -5<х<1

|x+3|>2; х+3>2 или  x+3<-2;  х>-1 или x<-5

|x-4|>3; х-4>3 или  x-4<-3; х>7 или x<1

Ix+2|>5​; х+2>5 или  x+2<-5; х>3 или x<-7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these absolute value inequalities, we need to consider the cases when the expression inside the absolute value is positive and negative. Let's analyze each inequality separately:

  1. |x - 7| > 0: This inequality is always true since the absolute value of any real number is non-negative. Therefore, all real numbers satisfy this inequality.

  2. |x - 4| < 3: We consider two cases: Case 1: x - 4 > 0: In this case, the inequality becomes x - 4 < 3, which simplifies to x < 7. Case 2: x - 4 < 0: In this case, the inequality becomes -(x - 4) < 3, which simplifies to -x + 4 < 3. Solving for x gives x > 1. Combining the two cases, the solution is 1 < x < 7.

  3. |2 + x| < 3: We consider two cases: Case 1: 2 + x > 0: In this case, the inequality becomes 2 + x < 3, which simplifies to x < 1. Case 2: 2 + x < 0: In this case, the inequality becomes -(2 + x) < 3, which simplifies to -x - 2 < 3. Solving for x gives x > -5. Combining the two cases, the solution is -5 < x < 1.

  4. |x + 3| > 2: We consider two cases: Case 1: x + 3 > 0: In this case, the inequality becomes x + 3 > 2, which simplifies to x > -1. Case 2: x + 3 < 0: In this case, the inequality becomes -(x + 3) > 2, which simplifies to -x - 3 > 2. Solving for x gives x < -5. Combining the two cases, the solution is x < -5 or x > -1.

  5. |x - 4| > 3: We consider two cases: Case 1: x - 4 > 0: In this case, the inequality becomes x - 4 > 3, which simplifies to x > 7. Case 2: x - 4 < 0: In this case, the inequality becomes -(x - 4) > 3, which simplifies to -x + 4 > 3. Solving for x gives x < 1. Combining the two cases, the solution is x < 1 or x > 7.

  6. |x + 2| > 5: We consider two cases: Case 1: x + 2 > 0: In this case, the inequality becomes x + 2 > 5, which simplifies to x > 3. Case 2: x + 2 < 0: In this case, the inequality becomes -(x + 2) > 5, which simplifies to -x - 2 > 5. Solving for x gives x < -7. Combining the two cases, the solution is x < -7 or x > 3.

So, combining all the solutions, we have: -7 < x < -5, -1 < x < 1, 1 < x < 3, 7 < x.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос