
Найти наибольшее и наименьшее значения функции z = 4x2 + y2 −2 y при x ≤1 , 0 ≤ y − x ≤1 , 0 ≤ x +
y ≤1.

Ответы на вопрос

Ответ:
minz(x;y)=-1; maxz(x;y)=1
Пошаговое объяснение:
z(x;y)=4x²+y²−2y при x ≤1 , 0 ≤ y − x ≤1 , 0 ≤ x + y ≤1
1) 0 ≤ y − x ≤1
0 ≤ x + y ≤1
0+0 ≤ (y − x)+(x + y) ≤1+1 ⇒ 0 ≤ y ≤1
2) 0 ≤ y − x ≤1⇒-1≤ x-y≤0
-1≤ x-y≤0
0 ≤ x + y ≤1
-1+0≤ (x-y)+(x+y)≤0+1⇒-0,5≤ x≤0,5
3) z(x;y)=4x²+y²−2y=4x²+(y-1)²-1
-0,5≤ x≤0,5 ⇒ 0≤4x²≤1
0 ≤ y ≤1 ⇒ 0≤(y-1)²≤1
0+0-1≤4x²+(y-1)²-1≤1+1-1
-1≤4x²+(y-1)²-1≤1
minz(x;y)=z(0;1)=-1
maxz(x;y)=z(0,5;0)=1



To find the largest and smallest values of the function subject to the given constraints, we need to examine the critical points within the domain defined by the inequalities , , and .
Let's start by identifying the critical points. A critical point occurs where the gradient of the function is equal to zero or is undefined. In this case, the gradient is defined as:
So, let's find the partial derivatives of with respect to and :
Next, we set these partial derivatives equal to zero and solve for and :
For , we get .
For , we get .
Thus, the critical point is .
Now, let's evaluate the function at the critical point and at the boundaries of the domain to find the maximum and minimum values:
Critical Point: .
Boundaries: a. : . b. : . c. : . d. : . e. : .
Now, we need to compare the values of at these points to find the maximum and minimum values:
- The maximum value will be the largest of all the values found.
- The minimum value will be the smallest of all the values found.
Let's analyze each case:
Critical Point: .
Boundaries: a. . b. . c. . d. . e. .
To find the maximum and minimum values, we should consider the values of
0
0