Вопрос задан 11.07.2023 в 12:36. Предмет Математика. Спрашивает Трусов Стас.

один велосипедист был в пути 7 ч а второй велосипедист проехал на 26 км меньше чем 1. Сколько км

проехал каждый велосипедист если скорость движения была одинаковая​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кубик Дима.

Відповідь:

70 and 44 km

Покрокове пояснення:

Пусть v₁=v₂= 10 км/год, t₁=7 часов.

Тогда S₂=S₁-26 км

S₁=v₁*t₁=10*7=70 km

S₂=70-26=44 km

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть xx - это расстояние (в километрах), которое проехал первый велосипедист, а yy - это расстояние (в километрах), которое проехал второй велосипедист.

Мы знаем, что время для обоих велосипедистов одинаковое и равно 7 часам:

Время=РасстояниеСкорость\text{Время} = \frac{\text{Расстояние}}{\text{Скорость}}

Так как скорость одинаковая для обоих велосипедистов, мы можем записать это как:

xСкорость=yСкорость=7\frac{x}{\text{Скорость}} = \frac{y}{\text{Скорость}} = 7

Теперь у нас есть второе уравнение, связанное с расстояниями:

y=x26y = x - 26

Теперь мы можем решить эту систему уравнений. Подставляя значение yy из второго уравнения в первое, получаем:

xСкорость=x26Скорость=7\frac{x}{\text{Скорость}} = \frac{x - 26}{\text{Скорость}} = 7

Отсюда следует, что:

x=x26=7×Скоростьx = x - 26 = 7 \times \text{Скорость}

26=7×Скорость26 = 7 \times \text{Скорость}

Скорость=267\text{Скорость} = \frac{26}{7}

Теперь мы можем использовать скорость, чтобы найти расстояния xx и yy:

x=7×267=26x = 7 \times \frac{26}{7} = 26

y=x26=2626=0y = x - 26 = 26 - 26 = 0

Таким образом, первый велосипедист проехал 26 км, а второй велосипедист проехал 0 км (вероятно, второй велосипедист даже не начал движение).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос