Вопрос задан 05.07.2023 в 02:19. Предмет Математика. Спрашивает Исохужаев Адхам.

Решите задачу: Периметр прямоугольника равен 40 см. Отношение длин его сторон равно 2/5. Вычислите

длины сторон прямоугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сибагатова Оксана.

Ответ:

5\dfrac{5}{7} см и  14\dfrac{2}{7} см.

Пошаговое объяснение:

40 : 2 = 20 (см) - сумма смежных сторон прямоугольника.

Пусть х см - ширина прямоугольника. тогда (20 - х) см - длина прямоугольника.

Зная, что отношение длин сторон прямоугольника равно 2/5, составим и решим уравнение:

\dfrac{x}{20-x} =\dfrac{2}{5} \\\\5x=2(20-x)\\5x=40-2x\\5x+2x=40\\7x=40\\\\x=\dfrac{40}{7} =5\dfrac{5}{7} (см) - ширина прямоугольника.

20-5\dfrac{5}{7} =19\dfrac{7}{7}- 5\dfrac{5}{7} =14\dfrac{2}{7} (см) - длина прямоугольника.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть длина прямоугольника будет 2x, а ширина будет 5x (согласно данному отношению).

Периметр прямоугольника равен сумме всех его сторон: 2 * (длина + ширина) = 40

Подставляя значения длины и ширины через x: 2 * (2x + 5x) = 40

Упростим уравнение: 2 * 7x = 40 14x = 40

Разделим обе стороны на 14, чтобы найти значение x: x = 40 / 14 x ≈ 2.857

Теперь мы знаем значение x, и можем найти длину и ширину: Длина = 2x ≈ 2 * 2.857 ≈ 5.714 см Ширина = 5x ≈ 5 * 2.857 ≈ 14.285 см

Итак, длина прямоугольника составляет примерно 5.714 см, а ширина составляет примерно 14.285 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос