It seems like you're asking for the value of the expression:
cos2(40∘)−sin2(20∘)cos(20∘)
Let's break this down step by step:
Use the trigonometric identity cos(2θ)=2cos2(θ)−1 to express cos2(40∘):
cos(2⋅20∘)=2cos2(20∘)−1
cos2(20∘)=2cos(2⋅20∘)+1
Use the trigonometric identity sin(2θ)=2sin(θ)cos(θ) to express sin2(20∘):
sin(2⋅20∘)=2sin(20∘)cos(20∘)
sin2(20∘)=2cos(20∘)sin(2⋅20∘)
Now let's substitute these expressions into the original expression:
cos2(40∘)−sin2(20∘)cos(20∘)=2cos(2⋅20∘)+1−2cos(20∘)sin(2⋅20∘)cos(20∘)
Now you can plug in the values of the trigonometric functions:
2cos(2⋅20∘)+1−2cos(20∘)sin(2⋅20∘)cos(20∘)=22cos2(20∘)−1+1−2cos(20∘)2sin(20∘)cos(20∘)cos(20∘)
Simplify further:
cos2(20∘)−sin(20∘)cos(20∘)cos(20∘)
Now you can factor out cos(20∘) from the denominator:
cos(20∘)(cos(20∘)−sin(20∘))cos(20∘)
Since cos(20∘)=0, you can cancel out the cos(20∘) terms:
co
0
0