Давайте разберемся с этим выражением:
sin ( 2 1 ∘ ) cos ( 9 ∘ ) + cos ( 15 0 ∘ ) cos ( 9 9 ∘ ) sin ( 2 0 ∘ ) cos ( 1 0 ∘ ) + cos ( 16 0 ∘ ) cos ( 10 0 ∘ ) \sin(21^\circ)\cos(9^\circ) + \frac{\cos(150^\circ)\cos(99^\circ)}{\sin(20^\circ)\cos(10^\circ)} + \cos(160^\circ)\cos(100^\circ) sin ( 2 1 ∘ ) cos ( 9 ∘ ) + s i n ( 2 0 ∘ ) c o s ( 1 0 ∘ ) c o s ( 15 0 ∘ ) c o s ( 9 9 ∘ ) + cos ( 16 0 ∘ ) cos ( 10 0 ∘ )
Первым делом, давайте воспользуемся тригонометрическими идентичностями:
sin ( a + b ) = sin ( a ) cos ( b ) + cos ( a ) sin ( b ) \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) sin ( a + b ) = sin ( a ) cos ( b ) + cos ( a ) sin ( b ) cos ( 18 0 ∘ − x ) = − cos ( x ) \cos(180^\circ - x) = -\cos(x) cos ( 18 0 ∘ − x ) = − cos ( x ) cos ( 9 0 ∘ − x ) = sin ( x ) \cos(90^\circ - x) = \sin(x) cos ( 9 0 ∘ − x ) = sin ( x ) Применим эти идентичности:
sin ( 2 1 ∘ ) cos ( 9 ∘ ) = 1 2 [ sin ( 3 0 ∘ ) − sin ( 1 2 ∘ ) ] \sin(21^\circ)\cos(9^\circ) = \frac{1}{2} \left[ \sin(30^\circ) - \sin(12^\circ) \right] sin ( 2 1 ∘ ) cos ( 9 ∘ ) = 2 1 [ sin ( 3 0 ∘ ) − sin ( 1 2 ∘ ) ]
= 1 2 [ 1 2 − 6 2 ] = \frac{1}{2} \left[ \frac{1}{2} - \frac{\sqrt{6}}{2} \right] = 2 1 [ 2 1 − 2 6 ]
= 1 − 6 4 = \frac{1 - \sqrt{6}}{4} = 4 1 − 6
cos ( 15 0 ∘ ) cos ( 9 9 ∘ ) = − cos ( 3 0 ∘ ) sin ( 9 ∘ ) \cos(150^\circ)\cos(99^\circ) = -\cos(30^\circ)\sin(9^\circ) cos ( 15 0 ∘ ) cos ( 9 9 ∘ ) = − cos ( 3 0 ∘ ) sin ( 9 ∘ )
= − 3 2 ⋅ 1 2 = -\frac{\sqrt{3}}{2} \cdot \frac{1}{2} = − 2 3 ⋅ 2 1
= − 3 4 = -\frac{\sqrt{3}}{4} = − 4 3
sin ( 2 0 ∘ ) cos ( 1 0 ∘ ) = 1 2 [ sin ( 3 0 ∘ ) + sin ( 1 0 ∘ ) ] \sin(20^\circ)\cos(10^\circ) = \frac{1}{2} \left[ \sin(30^\circ) + \sin(10^\circ) \right] sin ( 2 0 ∘ ) cos ( 1 0 ∘ ) = 2 1 [ sin ( 3 0 ∘ ) + sin ( 1 0 ∘ ) ]
= 1 2 [ 1 2 + 3 2 ] = \frac{1}{2} \left[ \frac{1}{2} + \frac{\sqrt{3}}{2} \right] = 2 1 [ 2 1 + 2 3 ]
= 1 + 3 4 = \frac{1 + \sqrt{3}}{4} = 4 1 + 3
cos ( 16 0 ∘ ) cos ( 10 0 ∘ ) = − cos ( 2 0 ∘ ) sin ( 1 0 ∘ ) \cos(160^\circ)\cos(100^\circ) = -\cos(20^\circ)\sin(10^\circ) cos ( 16 0 ∘ ) cos ( 10 0 ∘ ) = − cos ( 2 0 ∘ ) sin ( 1 0 ∘ )
= − 3 2 ⋅ 3 2 = -\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = − 2 3 ⋅ 2 3
= − 3 4 = -\frac{3}{4} = − 4 3
Теперь подставим полученные значения в исходное выражение:
1 − 6 4 + − 3 4 1 + 3 4 + ( − 3 4 ) \frac{1 - \sqrt{6}}{4} + \frac{-\frac{\sqrt{3}}{4}}{\frac{1 + \sqrt{3}}{4}} + (-\frac{3}{4}) 4 1 − 6 + 4
0
0