Вопрос задан 03.07.2023 в 05:12. Предмет Математика. Спрашивает Батырова Зухра.

Прибор состоит из шести элементов, включенных в цепь параллельно и работающих независимо друг от

друга. Вероятность безотказной работы каждого элемента за время t равна 0,6. Для безаварийной работы прибора достаточно, чтобы хотя бы один элемент был исправен. Какова вероятность, что за время t прибор будет работать безотказно?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романович Марина.

Ответ:

1-0,4⁶

Пошаговое объяснение:

вероятность отказа одного прибора 1-0,6=0,4

Раз цепь параллельна, то вероятность безотказной работы всей цепи будет равна

1-(1-0,6)⁶ = 1-0,4⁶

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы прибор работал безотказно, необходимо, чтобы хотя бы один из шести элементов был исправен. Для определения вероятности этого события мы можем воспользоваться дополнением вероятности отказа всех элементов.

Вероятность отказа одного элемента за время t составляет 1 - 0,6 = 0,4 (так как это вероятность неисправности). Поскольку элементы работают независимо, вероятность того, что все шесть элементов откажут, равна произведению вероятностей их отказа:

Вероятность отказа всех элементов = 0,4^6

Теперь мы можем найти вероятность безотказной работы прибора, используя дополнение:

Вероятность безотказной работы прибора = 1 - Вероятность отказа всех элементов = 1 - 0,4^6

Вычислив это выражение, мы получим вероятность работы прибора безотказно за время t.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос