
1+4+7+10+13+.......+94+97+100=?


Ответы на вопрос

1+4+7+10+13+17+21+25+29+33+47+51+55+59+63+67+71+75+79+83+87+91+
А дальше сам(-а)



The given sequence is an arithmetic progression with a common difference of 3. We can find the sum of an arithmetic progression using the following formula:
Sn = (n/2)(2a + (n-1)d)
where: Sn is the sum of the arithmetic progression n is the number of terms in the progression a is the first term of the progression d is the common difference
In this case, the first term (a) is 1, the common difference (d) is 3, and we need to find the sum up to the last term, which is 100.
Using the formula:
Sn = (n/2)(2a + (n-1)d) = (n/2)(2(1) + (n-1)(3)) = (n/2)(2 + 3n - 3) = (n/2)(3n - 1)
We need to find the value of n, which represents the number of terms in the sequence. We can use the formula for the nth term of an arithmetic progression to find n:
an = a + (n-1)d
In this case, we know that the last term is 100. Substituting the values into the formula:
100 = 1 + (n-1)3 99 = 3n - 3 102 = 3n n = 34
Now that we know n, we can substitute it back into the formula for Sn:
Sn = (n/2)(3n - 1) = (34/2)(3(34) - 1) = 17(102 - 1) = 17(101) = 1717
Therefore, the sum of the given sequence is 1717.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili