
Cos^x+4sin^x+2sin^x=0


Ответы на вопрос

Ответ:
2sinx(2cosx1)=0
2sinx=0
x1=pi*n
2cosx=1
cosx=1/2
x2=pi/3+2 pi/n
x3=pi/3+2pi*n



To solve the equation , we can start by simplifying it and then finding possible solutions.
First, notice that and are both non-negative for any real value of , as they are the squares of and respectively. So, we can rewrite the equation as follows:
Now, let's consider the possible solutions:
When is an even integer (e.g., ): In this case, is always positive, and is always non-negative. Therefore, will always be positive, and there are no real solutions.
When is an odd integer (e.g., ): In this case, can be either positive or negative, depending on the value of , and is always non-negative. So, it's possible to have solutions when is equal in magnitude but opposite in sign to .
Let's consider the equation when :
For this equation to be satisfied, and must have opposite signs, meaning is negative, and is positive. This occurs in the second and fourth quadrants of the unit circle.
So, one solution is when is an odd integer.
In summary, the equation has no real solutions when is an even integer, and it has one solution when is an odd integer, specifically .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili