
B) (e^8x+16/Sin^2 8x)dx


Ответы на вопрос

Ответ:
Пошаговое объяснение:



To find the integral of the function ∫ (e^(8x+16) / sin^2(8x)) dx, we can use trigonometric identities and substitution.
Let's start by simplifying the integrand:
∫ (e^(8x+16) / sin^2(8x)) dx
Now, we can use the identity for sin^2(8x):
sin^2(8x) = 1 - cos^2(8x)
So, our integral becomes:
∫ (e^(8x+16) / (1 - cos^2(8x))) dx
Next, we'll make a substitution to simplify this integral. Let's set:
u = cos(8x)
Now, calculate du:
du/dx = -8sin(8x)
dx = du / (-8sin(8x))
Now, substitute u and du into the integral:
∫ (e^(8x+16) / (1 - u^2)) * (-1/(8sin(8x))) du
Now, we need to express e^(8x+16) and sin(8x) in terms of u. Recall that:
e^(8x+16) = e^(8x) * e^16
sin(8x) = √(1 - cos^2(8x)) = √(1 - u^2)
So, our integral becomes:
∫ (-e^16 / 8) * (1 / (1 - u^2)) du
Now, we can simplify this further:
-1/8 * e^16 * ∫ (1 / (1 - u^2)) du
Now, we can use partial fraction decomposition to break this fraction into simpler fractions:
1 / (1 - u^2) = A / (1 - u) + B / (1 + u)
To find A and B, we can multiply both sides by the common denominator (1 - u)(1 + u):
1 = A(1 + u) + B(1 - u)
Now, we can solve for A and B. Let's first solve for A:
1 = A + Au + B - Bu
Now, group like terms:
(1 + B) = (A - B)u
Now, set the coefficients of u on both sides equal:
A - B = 0 (1)
Now, solve for B:
1 = A + B
Now, substitute the value of A from equation (1) into this equation:
1 = B + B
2B = 1
B = 1/2
Now, substitute B back into equation (1) to find A:
A - (1/2) = 0
A = 1/2
So, we have found that A = 1/2 and B = 1/2.
Now, we can rewrite our integral using these partial fractions:
-1/8 * e^16 * ∫ (1/2) * (1 / (1 - u)) + (1/2) * (1 / (1 + u)) du
Now, we can integrate each term separately:
-1/8 * e^16 * (1/2) * [ln|1 - u| - ln|1 + u|] + C
Now, substitute back for u:
-1/16 * e^16 * [ln|1 - cos(8x)| - ln|1 + cos(8x)|] + C
So, the integral of (e^(8x+16) / sin^2(8x)) dx is:
-1/16 * e^16 * [ln|1 - cos(8x)| - ln|1 + cos(8x)|] + C
Where C is the constant of integration.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili