
Вопрос задан 11.07.2019 в 21:47.
Предмет Геометрия.
Спрашивает Волкова Мария.
В выпуклом четырехугольнике ABCD угол BAC = углу CBD и угол ACD равен углу BDA . докажите , что
AC^2=BC^2+AD^2

Ответы на вопрос

Отвечает Шукало Верка.
Пусть О - точка пересечения диагоналей четырехугольника ABCD. Треугольник ABC подобен треугольнику BOC по двум углам (∠С у них общий и ∠BAC=∠CBO по условию), значит BC/OC=AC/BC,
т.е. BC²=OC·AC. Аналогично, из подобия треугольников CDA и DOA получаем AD/AO=AC/AD, т.е. AD²=AO·AC. Итак,
BC²+ AD²=OC·AC+AO·AC=(OC+AO)·AC=AC².
т.е. BC²=OC·AC. Аналогично, из подобия треугольников CDA и DOA получаем AD/AO=AC/AD, т.е. AD²=AO·AC. Итак,
BC²+ AD²=OC·AC+AO·AC=(OC+AO)·AC=AC².


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili