Вопрос задан 26.11.2023 в 05:13. Предмет Геометрия. Спрашивает Дубровская Полина.

Знайдіть коефіцієнт подібності двох прямокутників та їх площі, якщо сторони одного з них 5см і 8см,

а периметр другого - 52см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сыроватская Влада.

Ответ:

в равнобедренном треугольнике углы при основании равны ⇒

⇒ (180°-80°)/2=50° - ∠f,∠d

внешний угол при вершине f=∠e+∠d=50°+80°=130°

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Коефіцієнт подібності прямокутників можна знайти, порівнюючи їхні сторони. Два прямокутники подібні, якщо всі відповідні сторони є пропорційними. Пропорція означає, що співвідношення довжин сторін одного прямокутника до довжин сторін іншого є постійним.

Нехай перший прямокутник має сторони 5 см і 8 см, а другий прямокутник має периметр 52 см.

Периметр прямокутника обчислюється за формулою: \( P = 2l + 2w \), де \( l \) - довжина, \( w \) - ширина.

Отже, для другого прямокутника маємо:

\[ 52 = 2l + 2w \]

Далі потрібно знайти пропорцію між сторонами першого і другого прямокутників.

Пропорція для довжин сторін може бути виражена як \( \frac{l_1}{l_2} \), а для ширин - \( \frac{w_1}{w_2} \).

Таким чином, співвідношення сторін першого прямокутника до сторін другого може бути виражено як:

\[ \frac{l_1}{l_2} = \frac{5}{l_2} \] \[ \frac{w_1}{w_2} = \frac{8}{w_2} \]

Оскільки це співвідношення є постійним для подібних прямокутників, ми можемо використовувати його для розв'язання системи рівнянь:

\[ \frac{5}{l_2} = \frac{8}{w_2} \]

Виразимо \( l_2 \) або \( w_2 \) з цього рівняння і підставимо в рівняння для периметра, щоб знайти значення іншої сторони.

\[ l_2 = \frac{5w_2}{8} \]

Підставимо це значення в рівняння для периметра:

\[ 52 = 2\left(\frac{5w_2}{8}\right) + 2w_2 \]

Розв'яжемо це рівняння і знайдемо значення \( w_2 \). Після знаходження \( w_2 \) можна обчислити \( l_2 \).

Після знаходження обох сторін другого прямокутника можна порівняти їх зі сторонами першого прямокутника для знаходження коефіцієнта подібності.

Коефіцієнт подібності прямокутників можна визначити як відношення відповідних сторін. Наприклад:

\[ \text{Коефіцієнт подібності} = \frac{l_1}{l_2} = \frac{5}{l_2} \]

Таким чином, ви зможете знайти коефіцієнт подібності і площу обох прямокутників.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос