СРОЧНО НУЖНА ПОМОЩЬ Дано вектори а ( 5; у) та вектор b(-8;4). При якому значенні у вектори
перпендикулярні?Варіанти відповідей:а) 5б) -4в) 1,7г) 10Ответы на вопрос
Відповідь:
г) 10
Пояснення:
Якщо вектори перпендикулярні, то їх скалярний добуток a•b=0 рівний нулю:
aₓ•bₓ+ay•by=0.
5*(-8)+y*4=0
4y=40
y=10
Для того чтобы определить, при каком значении у векторы a(5; у) и b(-8;4) будут перпендикулярны, нам необходимо воспользоваться свойством перпендикулярности векторов.
Два вектора a и b перпендикулярны, если их скалярное произведение равно нулю. Скалярное произведение векторов a и b можно вычислить по формуле: a · b = ax * bx + ay * by
где ax и ay - координаты вектора a, bx и by - координаты вектора b.
В нашем случае, у нас есть векторы a(5; у) и b(-8;4). Подставим их координаты в формулу скалярного произведения и приравняем результат к нулю:
5 * -8 + у * 4 = 0
-40 + 4у = 0
Теперь решим полученное уравнение относительно у:
4у = 40
у = 40 / 4
у = 10
Таким образом, при значении у = 10 векторы a(5; 10) и b(-8;4) будут перпендикулярны. Ответ: г)+10.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
