Вопрос задан 04.11.2023 в 09:16. Предмет Геометрия. Спрашивает Шатохина Карина.

 Как изменится площадь боковой поверхности цилиндра если его высоту увеличить в 4 раза а радиус

основания уменьшить в 2 раза?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пунцуль Пётр.
S=L*H
L-длина окружности основания=πD,т.е. L уменьшится в 2 раза при уменьшении диаметра в 2раза
а при увеличении высоты в 4 раза площадь увеличится в 4 раза
S=L*H=π*1/2D*4H=2*πD*H
т.е.S увеличится в 2 раза
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Площадь боковой поверхности цилиндра вычисляется по формуле:

``` S = 2 * π * r * h ```

где `S` - площадь боковой поверхности, `r` - радиус цилиндра, `h` - высота цилиндра, `π` - число Пи.

Если высоту цилиндра увеличить в 4 раза и радиус уменьшить в 2 раза, то изменится и радиус, и высота. В результате, площадь боковой поверхности цилиндра изменится.

При увеличении высоты в 4 раза, площадь боковой поверхности увеличится в 4 раза, поскольку высота является множителем в формуле.

При уменьшении радиуса в 2 раза, площадь боковой поверхности уменьшится в 4 раза, поскольку радиус является множителем в формуле и его уменьшение в 2 раза влияет на площадь в 4 раза больше, чем увеличение в 2 раза.

Таким образом, общий эффект от этих изменений на площадь боковой поверхности будет смешанным: увеличение площади на 4 раза и уменьшение на 4 раза. В итоге, площадь боковой поверхности цилиндра останется прежней.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос